Reevaluating feature importance in machine learning models for CO2 photoreduction: A statistical perspective

被引:0
|
作者
Takefuji, Yoshiyasu [1 ]
机构
[1] Musashino Univ, Fac Data Sci, 3-3-3 Ariake Koto Ku, Tokyo 1358181, Japan
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2025年 / 368卷
关键词
CO2; photoreduction; Feature importance; Machine learning; Statistical analysis; Model biases; VIF analysis;
D O I
10.1016/j.apcatb.2025.125145
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chen et al. have advanced the theoretical design of dual-site metallo-covalent organic frameworks for enhancing CO2 photoreduction into C2H4 using various machine learning algorithms. While they demonstrated high predictive accuracy using a stacking approach with seven selected algorithms, this study emphasizes the potential biases in feature importance derived from these models. It argues for the necessity of computing unbiased feature importances and highlights the complications posed by different methodologies across models. Further, it recommends robust statistical techniques, such as Spearman's correlation and Kendall's tau, to improve interpretability and validity. Addressing collinearity through Variance Inflation Factor (VIF) analysis is also crucial. These steps aim to deepen understanding and optimize machine learning applications for carbon capture and utilization.
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Predicting CO2 capture of ionic liquids using machine learning
    Venkatraman, Vishwesh
    Alsberg, Bjorn Kare
    JOURNAL OF CO2 UTILIZATION, 2017, 21 : 162 - 168
  • [42] Bioinspired Catalysis for New Energy Exploration and CO2 Photoreduction
    Liu Lei
    Liu Jingang
    PROGRESS IN CHEMISTRY, 2013, 25 (04) : 563 - 576
  • [43] Machine learning predictive framework for CO2 thermodynamic properties in solution
    Zhang, Zhien
    Li, Hao
    Chang, Haixing
    Pan, Zhen
    Luo, Xubiao
    JOURNAL OF CO2 UTILIZATION, 2018, 26 : 152 - 159
  • [44] Synthesis of BixOyIz from molecular precursor and selective photoreduction of CO2 into CO
    Ding, Chenghua
    Ye, Liqun
    Zhao, Qiang
    Zhong, Zhiguo
    Liu, Kecheng
    Xie, Haiquan
    Bao, Keyan
    Zhang, Xingang
    Huang, Zixuan
    JOURNAL OF CO2 UTILIZATION, 2016, 14 : 135 - 142
  • [45] Interpretation and Prediction of the CO2 Sequestration of Steel Slag by Machine Learning
    He, Bingyang
    Zhu, Xingyu
    Cang, Zhizhi
    Liu, Yang
    Lei, Yuxin
    Chen, Zhaohou
    Wang, Yanlin
    Zheng, Yongchao
    Cang, Daqiang
    Zhang, Lingling
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (46) : 17940 - 17949
  • [46] Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction
    Wu, Hao-Lin
    Li, Xu-Bing
    Tung, Chen-Ho
    Wu, Li-Zhu
    ADVANCED MATERIALS, 2019, 31 (36)
  • [47] Influence of defects in porous ZnO nanoplates on CO2 photoreduction
    Li, Pan
    Zhu, Shuang
    Hu, Haifeng
    Guo, Lingju
    He, Tao
    CATALYSIS TODAY, 2019, 335 : 300 - 305
  • [48] Machine Learning Models for Statistical Analysis
    Grebovic, Marko
    Filipovic, Luka
    Katnic, Ivana
    Vukotic, Milica
    Popovic, Tomo
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2023, 20 (3A) : 505 - 514
  • [49] Machine Learning in Screening High Performance Electrocatalysts for CO2 Reduction
    Zhang, Ning
    Yang, Baopeng
    Liu, Kang
    Li, Hongmei
    Chen, Gen
    Qiu, Xiaoqing
    Li, Wenzhang
    Hu, Junhua
    Fu, Junwei
    Jiang, Yong
    Liu, Min
    Ye, Jinhua
    SMALL METHODS, 2021, 5 (11)
  • [50] Enhancing the classification of seismic events with supervised machine learning and feature importance
    Habbak, Eman L.
    Abdalzaher, Mohamed S.
    Othman, Adel S.
    Mansour, Ha
    SCIENTIFIC REPORTS, 2024, 14 (01):