Accelerating the discovery of high-mobility molecular semiconductors: a machine learning approach

被引:1
|
作者
Nematiaram, Tahereh [1 ]
Lamprou, Zenon [2 ]
Moshfeghi, Yashar [2 ]
机构
[1] Univ Strathclyde, Dept Pure & Appl Chem, 295 Cathedral St, Glasgow G1 1XL, Scotland
[2] Univ Strathclyde, Dept Comp & Informat Sci, 26 Richmond St, Glasgow G1 1XH, Scotland
关键词
CHARGE-TRANSPORT; STRATEGIES; CRYSTALS; PATH;
D O I
10.1039/d4cc04200j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The two-dimensionality (2D) of charge transport significantly affects charge carrier mobility in organic semiconductors, making it a key target for materials discovery and design. Traditional quantum-chemical methods for calculating 2D are resource-intensive, especially for large-scale screening, as they require computing charge transfer integrals for all unique pairs of interacting molecules. We explore the potential of machine learning models to predict whether this parameter will fall within a desirable range without performing any quantum-chemical calculations. Using a large database of molecular semiconductors with known 2D values, we evaluate various machine-learning models using chemical and geometrical descriptors. Our findings demonstrate that the LightGBM outperforms others, achieving 95% accuracy in predictions. These results are expected to facilitate the systematic identification of high-mobility molecular semiconductors.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Stable solution-processed high-mobility substituted pentacene semiconductors
    Li, Yuning
    Wu, Yiliang
    Liu, Ping
    Prostran, Zorica
    Gardner, Sandra
    Ong, Beng S.
    CHEMISTRY OF MATERIALS, 2007, 19 (03) : 418 - 423
  • [32] ACOUSTIC-WAVE AMPLIFICATION IN HIGH-MOBILITY SEMICONDUCTORS AT MICROWAVE FREQUENCIES
    TURNER, CW
    VANDUZER, T
    WELLER, K
    ELECTRONICS LETTERS, 1967, 3 (04) : 162 - &
  • [33] High-mobility emissive organic semiconductors: an emerging class of multifunctional materials
    Xie, Ziyi
    Liu, Dan
    Gao, Can
    Dong, Huanli
    Hu, Wenping
    NATURE REVIEWS MATERIALS, 2024, : 837 - 839
  • [34] A general route to printable high-mobility transparent amorphous oxide semiconductors
    Lee, Doo-Hyoung
    Chang, Yu-Jen
    Herman, Gregory S.
    Chang, Chih-Hung
    ADVANCED MATERIALS, 2007, 19 (06) : 843 - +
  • [35] Molecular Packing of High-Mobility Diketo Pyrrolo-Pyrrole Polymer Semiconductors with Branched Alkyl Side Chains
    Zhang, Xinran
    Richter, Lee J.
    DeLongchamp, Dean M.
    Kline, R. Joseph
    Hammond, Matthew R.
    McCulloch, Iain
    Heeney, Martin
    Ashraf, Raja S.
    Smith, Jeremy N.
    Anthopoulos, Thomas D.
    Schroeder, Bob
    Geerts, Yves H.
    Fischer, Daniel A.
    Toney, Michael F.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (38) : 15073 - 15084
  • [36] Molecular doped, color-tunable, high-mobility, emissive, organic semiconductors for light-emitting transistors
    Qin, Zhengsheng
    Gao, Can
    Gao, Haikuo
    Wang, Tianyu
    Dong, Huanli
    Hu, Wenping
    SCIENCE ADVANCES, 2022, 8 (27)
  • [37] An Adaptive Machine Learning Strategy for Accelerating Discovery of Perovskite Electrocatalysts
    Li, Zheng
    Achenie, Luke E. K.
    Xin, Hongliang
    ACS CATALYSIS, 2020, 10 (07) : 4377 - 4384
  • [38] Ab initio machine learning for accelerating catalytic materials discovery
    Huang Y.
    Xin H.
    Catalysis, 2021, 33 : 347 - 379
  • [39] Accelerating antiviral discovery by combining machine learning with structural biology
    Lee, Alpha
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2023, 299 (03) : S221 - S221
  • [40] Accelerating the Discovery of Novel Hypercompact Transcriptional Activators with Machine Learning
    Jawaid, M. Zaki
    Gainous, T. Blair
    Jadhav, Kavita
    Gautam, Aayushma
    Still, Chris
    Daley, Timothy P.
    de l'Hortet, Alexandra Collin
    Hart, Dan O.
    Yeo, Robin W.
    MOLECULAR THERAPY, 2024, 32 (04) : 779 - 779