Accelerating the discovery of high-mobility molecular semiconductors: a machine learning approach

被引:1
|
作者
Nematiaram, Tahereh [1 ]
Lamprou, Zenon [2 ]
Moshfeghi, Yashar [2 ]
机构
[1] Univ Strathclyde, Dept Pure & Appl Chem, 295 Cathedral St, Glasgow G1 1XL, Scotland
[2] Univ Strathclyde, Dept Comp & Informat Sci, 26 Richmond St, Glasgow G1 1XH, Scotland
关键词
CHARGE-TRANSPORT; STRATEGIES; CRYSTALS; PATH;
D O I
10.1039/d4cc04200j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The two-dimensionality (2D) of charge transport significantly affects charge carrier mobility in organic semiconductors, making it a key target for materials discovery and design. Traditional quantum-chemical methods for calculating 2D are resource-intensive, especially for large-scale screening, as they require computing charge transfer integrals for all unique pairs of interacting molecules. We explore the potential of machine learning models to predict whether this parameter will fall within a desirable range without performing any quantum-chemical calculations. Using a large database of molecular semiconductors with known 2D values, we evaluate various machine-learning models using chemical and geometrical descriptors. Our findings demonstrate that the LightGBM outperforms others, achieving 95% accuracy in predictions. These results are expected to facilitate the systematic identification of high-mobility molecular semiconductors.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A map of high-mobility molecular semiconductors
    S. Fratini
    S. Ciuchi
    D. Mayou
    G. Trambly de Laissardière
    A. Troisi
    Nature Materials, 2017, 16 : 998 - 1002
  • [2] A map of high-mobility molecular semiconductors
    Fratini, S.
    Ciuchi, S.
    Mayou, D.
    de laissardiere, G. Trambly
    Troisi, A.
    NATURE MATERIALS, 2017, 16 (10) : 998 - +
  • [3] Charge transport in high-mobility conjugated polymers and molecular semiconductors
    Fratini, Simone
    Nikolka, Mark
    Salleo, Alberto
    Schweicher, Guillaume
    Sirringhaus, Henning
    NATURE MATERIALS, 2020, 19 (05) : 491 - 502
  • [4] Charge transport in high-mobility conjugated polymers and molecular semiconductors
    Simone Fratini
    Mark Nikolka
    Alberto Salleo
    Guillaume Schweicher
    Henning Sirringhaus
    Nature Materials, 2020, 19 : 491 - 502
  • [5] Charge-transport physics of high-mobility molecular semiconductors
    Sirringhaus, Henning
    Sakanoue, Tomo
    Chang, Jui-Fen
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (09): : 1655 - 1676
  • [6] Interpretable discovery of semiconductors with machine learning
    Hitarth Choubisa
    Petar Todorović
    Joao M. Pina
    Darshan H. Parmar
    Ziliang Li
    Oleksandr Voznyy
    Isaac Tamblyn
    Edward H. Sargent
    npj Computational Materials, 9
  • [7] Interpretable discovery of semiconductors with machine learning
    Choubisa, Hitarth
    Todorovic, Petar
    Pina, Joao M. M.
    Parmar, Darshan H.
    Li, Ziliang
    Voznyy, Oleksandr
    Tamblyn, Isaac
    Sargent, Edward H.
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [8] Polaron spin dynamics in high-mobility polymeric semiconductors
    Sam Schott
    Uday Chopra
    Vincent Lemaur
    Anton Melnyk
    Yoan Olivier
    Riccardo Di Pietro
    Igor Romanov
    Remington L. Carey
    Xuechen Jiao
    Cameron Jellett
    Mark Little
    Adam Marks
    Christopher R. McNeill
    Iain McCulloch
    Erik R. McNellis
    Denis Andrienko
    David Beljonne
    Jairo Sinova
    Henning Sirringhaus
    Nature Physics, 2019, 15 : 814 - 822
  • [9] Multifunction-oriented high-mobility polymer semiconductors
    Mingliang Zhu
    Yunlong Guo
    Yunqi Liu
    NationalScienceReview, 2024, 11 (03) : 16 - 19
  • [10] Glasslike heat conduction in high-mobility crystalline semiconductors
    Cohn, JL
    Nolas, GS
    Fessatidis, V
    Metcalf, TH
    Slack, GA
    PHYSICAL REVIEW LETTERS, 1999, 82 (04) : 779 - 782