Low-Carbon Economic Scheduling of Hydrogen-Integrated Energy Systems with Enhanced Bilateral Supply-Demand Response Considering Vehicle to Grid Under Power-to-Gas-Carbon Capture System Coupling

被引:0
|
作者
Dang, Yulong [1 ]
Wang, Weiqing [2 ]
机构
[1] Xinjiang Univ, Coll Elect Engn, Urumqi 830017, Peoples R China
[2] Xinjiang Univ, Coll Elect Engn, Engn Res Ctr, Educ Minist Renewable Energy Power Generat & Grid, Urumqi 830017, Peoples R China
基金
中国国家自然科学基金;
关键词
hydrogen-integrated energy systems; economic scheduling; operational efficiency; supply flexibility; CHP; demand response; electric vehicles; low-carbon performance; V2G;
D O I
10.3390/pr13030636
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Hydrogen-Integrated energy systems (HIESs) are pivotal in driving the transition to a low-carbon energy structure in China. This paper proposes a low-carbon economic scheduling strategy to improve the operational efficiency and reduce the carbon emissions of HIESs. The approach begins with the implementation of a stepwise carbon trading framework to limit the carbon output of the system. This is followed by the development of a joint operational model that combines hydrogen energy use and carbon capture. To improve the energy supply flexibility of HIESs, modifications to the conventional combined heat and power (CHP) unit are made by incorporating a waste heat boiler and an organic Rankine cycle. This results in a flexible CHP response model capable of adjusting both electricity and heat outputs. Furthermore, a comprehensive demand response model is designed to optimize the flexible capacities of electric and thermal loads, thereby enhancing demand-side responsiveness. The integration of electric vehicles (EVs) into the system is analyzed with respect to their energy consumption patterns and dispatch capabilities, which improves their potential for flexible scheduling and enables an optimized synergy between the demand-side flexibility and system operations. Finally, a low-carbon economic scheduling model for the HIES is developed with the objective of minimizing system costs. The results show that the proposed scheduling method effectively enhances the economy, low-carbon performance, and flexibility of HIES operation while promoting clean energy consumption, deep decarbonization of the system, and the synergistic complementarity of flexible supply-demand resources. In the broader context of expanding clean energy and growing EV adoption, this study demonstrates the potential of energy-saving, emission-reduction systems and vehicle-to-grid (V2G) strategies to contribute to the sustainable and green development of the energy sector.
引用
收藏
页数:27
相关论文
共 24 条
  • [21] MULTI-TIME SCALE SOURCE-LOAD INTERACTIVE OPTIMAL SCHEDULING OF INTEGRATED ENERGY SYSTEM CONSIDERING LOW-CARBON DEMAND RESPONSE
    Li, Yunzhi
    Liu, Jizhen
    Hu, Yang
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (11): : 84 - 96
  • [22] The low-carbon economic scheduling method for regional integrated energy systems considering the joint integration of electric vehicles and concentrated solar power plants for wind power consumption
    Yang, Yulong
    Li, Songyuan
    Zhang, Ziye
    Zhang, Nan
    Wang, Songnan
    Wu, Xinge
    Yan, Han
    WIND ENGINEERING, 2025, 49 (01) : 17 - 33
  • [23] Economic and climate benefits of vehicle-to-grid for low-carbon transitions of power systems: A case study of China's 2030 renewable energy target
    Yao, Xing
    Fan, Ying
    Zhao, Fan
    Ma, Shao-Chao
    JOURNAL OF CLEANER PRODUCTION, 2022, 330
  • [24] Low-carbon economic dispatch of integrated energy system containing electric hydrogen production based on VMD-GRU short-term wind power prediction
    Chen, Haipeng
    Wu, Hao
    Kan, Tianyang
    Zhang, Jinhao
    Li, Haolin
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 154