Simulations of Common Unsupervised Domain Adaptation Algorithms for Image Classification

被引:0
|
作者
Chaddad, Ahmad [1 ,2 ]
Wu, Yihang [1 ]
Jiang, Yuchen [1 ]
Bouridane, Ahmed [3 ]
Desrosiers, Christian [2 ]
机构
[1] Guilin Univ Elect Technol, Sch Artificial Intelligence, Lab Artificial Intelligence Personalised Med, Guilin 541004, Peoples R China
[2] Ecole Technol Super, Lab Imagery Vis & Artificial Intelligence, Montreal, PQ H3C 1K3, Canada
[3] Univ Sharjah, Ctr Data Analyt & Cybersecur CDAC, Sharjah, U Arab Emirates
基金
中国国家自然科学基金;
关键词
Training; Deep learning; Data models; Internet; Feature extraction; Adaptation models; Transformers; Training data; Sun; Medical services; Domain adaptation (DA); image classification; machine learning; medical imaging;
D O I
10.1109/TIM.2025.3527531
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traditional machine learning assumes that training and test sets are derived from the same distribution; however, this assumption does not always hold in practical applications. This distribution disparity can lead to severe performance drops when the trained model is used in new datasets. Domain adaptation (DA) is a machine learning technique that aims to address this problem by reducing the differences between domains. This article presents simulation-based algorithms of recent DA techniques, mainly related to unsupervised DA (UDA), where labels are available only in the source domain. Our study compares these techniques with public datasets and diverse characteristics, highlighting their respective strengths and drawbacks. For example, safe self-refinement for transformer-based DA (SSRT) achieved the highest accuracy (91.6%) in the office-31 dataset during our simulations, however, the accuracy dropped to 72.4% in the Office-Home dataset when using limited batch sizes. In addition to improving the reader's comprehension of recent techniques in DA, our study also highlights challenges and upcoming directions for research in this domain. The codes are available at https://github.com/AIPMLab/Domain_Adaptation.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Biclassifier Network With Intermediate Domain for Unsupervised Domain Adaptation PolSAR Image Classification
    Wu, Zhenhua
    Zhu, Dayi
    Cao, Yice
    Zhang, Man
    Yang, Lixia
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [2] Multilabel Aerial Image Classification With Unsupervised Domain Adaptation
    Lin, Dan
    Lin, Jianzhe
    Zhao, Liang
    Wang, Z. Jane
    Chen, Zhikui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Unsupervised Multi-Class Domain Adaptation: Theory, Algorithms, and Practice
    Zhang, Yabin
    Deng, Bin
    Tang, Hui
    Zhang, Lei
    Jia, Kui
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (05) : 2775 - 2792
  • [4] Transferable Feature Selection for Unsupervised Domain Adaptation
    Yan, Yuguang
    Wu, Hanrui
    Ye, Yuzhong
    Bi, Chaoyang
    Lu, Min
    Liu, Dapeng
    Wu, Qingyao
    Ng, Michael K.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5536 - 5551
  • [5] Generating Target Image-Label Pairs for Unsupervised Domain Adaptation
    Li, Rui
    Cao, Wenming
    Wu, Si
    Wong, Hau-San
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7997 - 8011
  • [6] Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis
    Zhang, Yifan
    Wei, Ying
    Wu, Qingyao
    Zhao, Peilin
    Niu, Shuaicheng
    Huang, Junzhou
    Tan, Mingkui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7834 - 7844
  • [7] PPLM-Net: Partial Patch Local Masking Net for Remote Sensing Image Unsupervised Domain Adaptation Classification
    Leng, Junsong
    Chen, Zhong
    Mu, Haodong
    Liu, Tianhang
    Chen, Hanruo
    Wang, Guoyou
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 17021 - 17035
  • [8] Toward Unsupervised Domain Adaptation Fault Diagnosis: A Multisource Multitarget Method
    Wang, Zixuan
    Zhang, Jian
    Ma, Ke
    Butala, Mark D.
    Tang, Haoran
    Wang, Haibo
    Qin, Bo
    Shen, Weiming
    Wang, Hongwei
    IEEE SENSORS JOURNAL, 2025, 25 (01) : 1994 - 2007
  • [9] Self-Alignment for Black-Box Domain Adaptation of Image Classification
    Liu, Chang
    Zhou, Lihua
    Ye, Mao
    Li, Xue
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1709 - 1713
  • [10] Planet Craters Detection Based on Unsupervised Domain Adaptation
    Zhang, Zhaoxiang
    Xu, Yuelei
    Song, Jianing
    Zhou, Qing
    Rasol, Jarhinbek
    Ma, Linhua
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (05) : 7140 - 7152