Motion and thermal stability for high-temperature superconducting maglev vehicle under extreme crosswind conditions

被引:0
作者
Xu, Le [1 ]
Zheng, Jun [1 ]
Zhao, Yonghai [2 ]
Pang, Peng [2 ]
Wang, Li [3 ]
Wang, Jukun [3 ]
机构
[1] Southwest Jiaotong Univ, State Key Lab Rail Transit Vehicle Syst, Chengdu 610031, Peoples R China
[2] Southwest Jiaotong Univ, Sch Elect Engn, Chengdu 610031, Peoples R China
[3] Southwest Jiaotong Univ, Sch Mech & Aerosp Engn, Chengdu 610031, Peoples R China
来源
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS | 2025年 / 628卷
基金
中国国家自然科学基金;
关键词
High-temperature superconducting bulk; Maglev train; Temperature rise; Crosswind; Stability; HTS BULK; FIELDS;
D O I
10.1016/j.physc.2024.1354620
中图分类号
O59 [应用物理学];
学科分类号
摘要
High-temperature superconductor (HTS) pinning magnetic levitation (maglev) systems show significant potential for high-speed rail transportation applications, attributed to their passive and stable levitation arising from the coupling between HTS bulks and the permanent magnetic guideway (PMG). However, there is a lack of research on the operational safety of HTS maglev trains under extreme crosswind conditions as one significant safety issue of the HTS maglev transport tool. Therefore, this paper employs an experimentally validated two-dimensional electromagnetic-thermal-mechanical model to study the temperature rise variations in HTS bulks under different extreme wind scales, The maximum temperature rise inside the bulk submerged in liquid nitrogen remains below 1 K. It also preliminarily explores the wind scales that cause motion instability in HTS maglev trains. The results indicate that extreme crosswind conditions have minimal effect on the temperature rise of HTS bulks. However, under wind scale 12 conditions, HTS maglev trains face a risk of derailment. These findings offer valuable thermal-motion stability insight for informing the future design and practical implementation of HTS pinning maglev systems.
引用
收藏
页数:10
相关论文
共 41 条
[1]  
[Anonymous], 2005, P 8 INT S MAGN SUSP
[2]   Radial and axial stiffness of superconducting bearings based on YBCO single-domain bulks processed with artificial holes [J].
Antoncik, F. ;
Lojka, M. ;
Hlasek, T. ;
Bartunek, V. ;
Valiente-Blanco, I. ;
Perez-Diaz, J. L. ;
Jankovsky, O. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2020, 33 (04)
[3]   High temperature superconducting rotating electrical machines: An overview [J].
Chow, Calvin C. T. ;
Ainslie, Mark D. ;
Chau, K. T. .
ENERGY REPORTS, 2023, 9 :1124-1156
[4]  
Chowdhury NB, 2023, bioRxiv, DOI 10.1101/2023.07.09.548275
[5]   VORTEX CONFINEMENT BY COLUMNAR DEFECTS IN YBA2CU3O7 CRYSTALS - ENHANCED PINNING AT HIGH FIELDS AND TEMPERATURES [J].
CIVALE, L ;
MARWICK, AD ;
WORTHINGTON, TK ;
KIRK, MA ;
THOMPSON, JR ;
KRUSINELBAUM, L ;
SUN, Y ;
CLEM, JR ;
HOLTZBERG, F .
PHYSICAL REVIEW LETTERS, 1991, 67 (05) :648-651
[6]  
da Silva A. M., 1995, P INT COADS WINDS WO, P270
[7]   A High-Temperature Superconducting Maglev Ring Test Line Developed in Chengdu, China [J].
Deng, Zigang ;
Zhang, Weihua ;
Zheng, Jun ;
Ren, Yu ;
Jiang, Donghui ;
Zheng, Xinxin ;
Zhang, Jianghua ;
Gao, Pengfei ;
Lin, Qunxu ;
Song, Bo ;
Deng, Changyan .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2016, 26 (06)
[8]  
Franklin W.S., 1911, Sch. Sci. Math., V11, P7
[9]   Look-ahead prediction of spindle thermal errors with on-machine measurement and the cubic exponential smoothing-unscented Kalman filtering-based temperature prediction model of the machine tools [J].
Fu, Guoqiang ;
Zheng, Yue ;
Zhou, Linfeng ;
Lu, Caijiang ;
Zhang, Li ;
Wang, Xi ;
Wang, Tao .
MEASUREMENT, 2023, 210
[10]   PHONON THERMAL-DIFFUSIVITY AND CONDUCTIVITY OF OXYGEN-DEFICIENT YBA2CU3O7-X [J].
FUJISHIRO, H ;
IKEBE, M ;
NAITO, T ;
NOTO, K .
PHYSICA C, 1994, 235 :825-826