A Note on Frames in Quaternionic Hilbert Spaces

被引:0
|
作者
Sharma, Sumit Kumar [1 ]
Sharma, Raksha [2 ]
机构
[1] Univ Delhi, Kirori Mal Coll, Dept Math, Delhi 110007, India
[2] Univ Delhi, Kirori Mal Coll, Dept Phys, Delhi 110007, India
来源
SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS | 2025年 / 22卷 / 01期
关键词
Frames; Block frames; Quaterninic Hilbert space;
D O I
10.22130/scma.2024.2025108.1666
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define a modified version of frame in quaternionic Hilbert spaces (QHS) and give a necessary condition for a block Bessel sequence in terms of a bounded right linear operator. Also, a necessary and sufficient condition for a sequence to be a block Bessel sequence is given. Further, a method to construct a desired block frame using a given block frame is discussed. Finally, a characterization of block frame in terms of a right linear operator is given.
引用
收藏
页码:125 / 136
页数:13
相关论文
共 50 条
  • [21] Weaving K-Frames in Hilbert Spaces
    Deepshikha
    Vashisht, Lalit K.
    RESULTS IN MATHEMATICS, 2018, 73 (02)
  • [22] SOME RESULTS ON CONTROLLED FRAMES IN HILBERT SPACES
    Kamran MUSAZADEH
    Hassan KHANDANI
    Acta Mathematica Scientia, 2016, (03) : 655 - 665
  • [23] SOME RESULTS ON CONTROLLED FRAMES IN HILBERT SPACES
    Musazadeh, Kamran
    Khandani, Hassan
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (03) : 655 - 665
  • [24] On the Sum of K-Frames in Hilbert Spaces
    Miao He
    Jinsong Leng
    Jiali Yu
    Yuxiang Xu
    Mediterranean Journal of Mathematics, 2020, 17
  • [25] Orthogonal greedy algorithm for frames in Hilbert spaces
    Poumai, K. T.
    Kaushik, S. K.
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 212 - 216
  • [26] New inequalities for weaving frames in Hilbert spaces
    Xu, Yuxiang
    Leng, Jinsong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [27] Frames and non linear approximations in Hilbert spaces
    Poumai, K. T.
    Kaushik, S. K.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2016, 51 (01): : 41 - 49
  • [28] G-FRAMES AND STABILITY OF G-FRAMES IN HILBERT SPACES
    Najati, Abbas
    Faroughi, M. H.
    Rahimi, Asghar
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2008, 14 (03): : 271 - 286
  • [29] EXTENSION OF BESSEL SEQUENCES TO DUAL FRAMES IN HILBERT SPACES
    Deepshikha
    Vashisht, L. K.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2017, 79 (02): : 71 - 82
  • [30] Numerically and spectrally optimal dual frames in Hilbert spaces
    Arabyani-Neyshaburi, Fahimeh
    AkbarArefijamaal, Ali
    Sadeghi, Ghadir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 604 : 52 - 71