A Note on Frames in Quaternionic Hilbert Spaces

被引:0
|
作者
Sharma, Sumit Kumar [1 ]
Sharma, Raksha [2 ]
机构
[1] Univ Delhi, Kirori Mal Coll, Dept Math, Delhi 110007, India
[2] Univ Delhi, Kirori Mal Coll, Dept Phys, Delhi 110007, India
来源
SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS | 2025年 / 22卷 / 01期
关键词
Frames; Block frames; Quaterninic Hilbert space;
D O I
10.22130/scma.2024.2025108.1666
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define a modified version of frame in quaternionic Hilbert spaces (QHS) and give a necessary condition for a block Bessel sequence in terms of a bounded right linear operator. Also, a necessary and sufficient condition for a sequence to be a block Bessel sequence is given. Further, a method to construct a desired block frame using a given block frame is discussed. Finally, a characterization of block frame in terms of a right linear operator is given.
引用
收藏
页码:125 / 136
页数:13
相关论文
共 50 条
  • [11] On Weaving Fusion Frames for Hilbert Spaces
    Deepshikha
    Garg, Saakshi
    Vashisht, Lalit K.
    Verma, Geetika
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 381 - 385
  • [12] Controlled weaving frames in Hilbert spaces
    Rezapour, Reza
    Rahimi, Asghar
    Osgooei, Elnaz
    Dehghan, Hossein
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2019, 22 (01)
  • [13] Approximately dual frames in Hilbert spaces and applications to Gabor frames
    Ole Christensen
    Richard S. Laugesen
    Sampling Theory in Signal and Image Processing, 2010, 9 (1-3): : 77 - 89
  • [14] Weaving K-Frames in Hilbert Spaces
    Lalit K. Deepshikha
    Results in Mathematics, 2018, 73
  • [15] Constructing frames for finite dimensional Hilbert spaces
    Rolli, William J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 321 (01) : 388 - 395
  • [16] New inequalities for weaving frames in Hilbert spaces
    Yuxiang Xu
    Jinsong Leng
    Journal of Inequalities and Applications, 2021
  • [17] STUDY ON OPERATOR REPRESENTATION OF FRAMES IN HILBERT SPACES
    Cheshmavar, Jahangir
    Dallaki, Ayyaneh
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2023, 85 (01): : 35 - 42
  • [18] On the Sum of K-Frames in Hilbert Spaces
    He, Miao
    Leng, Jinsong
    Yu, Jiali
    Xu, Yuxiang
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (02)
  • [19] Frames and non linear approximations in Hilbert spaces
    K. T. Poumai
    S. K. Kaushik
    Journal of Contemporary Mathematical Analysis, 2016, 51 : 41 - 49
  • [20] Characterizations of wavelet bases and frames in Hilbert spaces
    Lee, SL
    Tang, WS
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING V, 1997, 3169 : 282 - 290