A normalized Caputo-Fabrizio fractional diffusion equation

被引:0
|
作者
Kim, Junseok [1 ]
机构
[1] Korea Univ, Dept Math, Seoul 02841, South Korea
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 03期
基金
新加坡国家研究基金会;
关键词
normalized Caputo-Fabrizio fractional derivative; Caputo derivative; diffusion equation;
D O I
10.3934/math.2025282
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a normalized Caputo-Fabrizio (CF) fractional diffusion equation. The CF fractional derivative replaces the power-law kernel in the Caputo derivative with an exponential kernel, which avoids singularities. Compared to the Caputo derivative, the CF derivative is better suited for systems where memory effects decay smoothly rather than following a power law. However, the kernel is not normalized in the sense that its weighting function does not integrate to unity. To resolve this limitation, we develop a modified formulation that ensures proper normalization. To investigate the fractional order's effect on evolution dynamics, we perform computational tests that highlight memory effects.
引用
收藏
页码:6195 / 6208
页数:14
相关论文
共 50 条
  • [1] On Fractional Diffusion Equation with Caputo-Fabrizio Derivative and Memory Term
    Binh Duy Ho
    Van Kim Ho Thi
    Long Le Dinh
    Nguyen Hoang Luc
    Phuong Nguyen
    ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
  • [2] GENERALIZED CAPUTO-FABRIZIO FRACTIONAL DIFFERENTIAL EQUATION
    Onitsuka, Masakazu
    EL-Fassi, Iz-iddine
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 964 - 975
  • [3] Analysis of asymptotic behavior of the Caputo-Fabrizio time-fractional diffusion equation
    Jia, Jinhong
    Wang, Hong
    APPLIED MATHEMATICS LETTERS, 2023, 136
  • [4] Fractional advection differential equation within Caputo and Caputo-Fabrizio derivatives
    Baleanu, Dumitru
    Agheli, Bahram
    Al Qurashi, Maysaa Mohamed
    ADVANCES IN MECHANICAL ENGINEERING, 2016, 8 (12): : 1 - 8
  • [5] Analysis of Numerical Method for Diffusion Equation with Time-Fractional Caputo-Fabrizio Derivative
    Wang, Hanxiao
    Zhang, Xindong
    Luo, Ziyang
    Liu, Juan
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [6] The Ulam Stability of Fractional Differential Equation with the Caputo-Fabrizio Derivative
    Wang, Shuyi
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [7] Recovering the space source term for the fractional-diffusion equation with Caputo-Fabrizio derivative
    Le Nhat Huynh
    Nguyen Hoang Luc
    Baleanu, Dumitru
    Le Dinh Long
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [8] Analysis of fractional Fokker-Planck equation with Caputo and Caputo-Fabrizio derivatives
    Cetinkaya, Suleyman
    Demir, Ali
    Baleanu, Dumitru
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2021, 48 (02): : 334 - 348
  • [9] Solution of the fractional diffusion equation by using Caputo-Fabrizio derivative: application to intrinsic arsenic diffusion in germanium
    Souigat, A.
    Korichi, Z.
    Meftah, M. Tayeb
    REVISTA MEXICANA DE FISICA, 2024, 70 (01)
  • [10] Well-posedness of an initial value problem for fractional diffusion equation with Caputo-Fabrizio derivative
    Nguyen Huy Tuan
    Zhou, Yong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 375