A Weyl law for the p-Laplacian

被引:0
|
作者
Mazurowski, Liam [1 ]
机构
[1] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
关键词
p-Laplacian; Weyl law; Non-linear eigenvalues;
D O I
10.1016/j.jfa.2024.110734
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a Weyl law holds for the variational spectrum of the p-Laplacian. More precisely, let (lambda(i))(i=1)(infinity) be the variational spectrum of Delta(p) on a closed Riemannian manifold (X, g) and let N(lambda) = #{i: lambda(i )< lambda} be the associated counting function. Then we have a Weyl law N(lambda)similar to c vol(X)lambda(n/p). This confirms a conjecture of Friedlander. The proof is based on ideas of Gromov [5] and Liokumovich, Marques, Neves [7]. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Implicit Elliptic Problems with p-Laplacian
    Cabanillas, L. E.
    Luque, J., V
    ARMENIAN JOURNAL OF MATHEMATICS, 2024, 16 (12): : 1 - 10
  • [42] OPTIMIZATION IN PROBLEMS INVOLVING THE P-LAPLACIAN
    Marras, Monica
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [43] Quadrature Domains and p-Laplacian Growth
    King, John R.
    McCue, Scott W.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2009, 3 (02) : 453 - 469
  • [44] EXISTENCE RESULTS FOR PERTURBATIONS OF THE P-LAPLACIAN
    COSTA, DG
    MAGALHAES, CA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (03) : 409 - 418
  • [45] Principal eigenvalue of the p-Laplacian in RN
    Furusho, Y
    Murata, Y
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) : 4749 - 4756
  • [46] Eigenvalues of the discrete p-Laplacian for graphs
    Amghibech, S
    ARS COMBINATORIA, 2003, 67 : 283 - 302
  • [47] On a parabolic equation related to the p-Laplacian
    Zhan, Huashui
    BOUNDARY VALUE PROBLEMS, 2016,
  • [48] Remarks on an optimization problem for the p-Laplacian
    Del Pezzo, Leandro M.
    Fernandez Bonder, Julian
    APPLIED MATHEMATICS LETTERS, 2010, 23 (02) : 188 - 192
  • [49] p-Laplacian problems with jumping nonlinearities
    Rynne, Bryan P.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 226 (02) : 501 - 524
  • [50] Periodic p-Laplacian with nonlocal terms
    Zhou, Qian
    Ke, Yuanyuan
    Wang, Yifu
    Yin, Jingxue
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (02) : 442 - 453