We show that a Weyl law holds for the variational spectrum of the p-Laplacian. More precisely, let (lambda(i))(i=1)(infinity) be the variational spectrum of Delta(p) on a closed Riemannian manifold (X, g) and let N(lambda) = #{i: lambda(i )< lambda} be the associated counting function. Then we have a Weyl law N(lambda)similar to c vol(X)lambda(n/p). This confirms a conjecture of Friedlander. The proof is based on ideas of Gromov [5] and Liokumovich, Marques, Neves [7]. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
机构:
Natl Univ San Marcos, Inst Math Res, Fac Math Sci, Av Venezuela S-N, Lima, PeruNatl Univ San Marcos, Inst Math Res, Fac Math Sci, Av Venezuela S-N, Lima, Peru
Cabanillas, L. E.
Luque, J., V
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ San Marcos, Inst Math Res, Fac Math Sci, Av Venezuela S-N, Lima, PeruNatl Univ San Marcos, Inst Math Res, Fac Math Sci, Av Venezuela S-N, Lima, Peru
Luque, J., V
ARMENIAN JOURNAL OF MATHEMATICS,
2024,
16
(12):
: 1
-
10
机构:
Univ Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
Del Pezzo, Leandro M.
Fernandez Bonder, Julian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina