A Weyl law for the p-Laplacian

被引:0
|
作者
Mazurowski, Liam [1 ]
机构
[1] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
关键词
p-Laplacian; Weyl law; Non-linear eigenvalues;
D O I
10.1016/j.jfa.2024.110734
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a Weyl law holds for the variational spectrum of the p-Laplacian. More precisely, let (lambda(i))(i=1)(infinity) be the variational spectrum of Delta(p) on a closed Riemannian manifold (X, g) and let N(lambda) = #{i: lambda(i )< lambda} be the associated counting function. Then we have a Weyl law N(lambda)similar to c vol(X)lambda(n/p). This confirms a conjecture of Friedlander. The proof is based on ideas of Gromov [5] and Liokumovich, Marques, Neves [7]. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] EIGENVALUES HOMOGENIZATION FOR THE FRACTIONAL p-LAPLACIAN
    Martin Salort, Ariel
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [32] The first eigenvalue of Finsler p-Laplacian
    Yin, Song-Ting
    He, Qun
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 30 - 49
  • [33] On the fundamental eigenvalue ratio of the p-Laplacian
    Fleckinger, Jacqueline
    Harrell, Evans M., II
    de Thelin, Francois
    BULLETIN DES SCIENCES MATHEMATIQUES, 2007, 131 (07): : 613 - 619
  • [34] Global bifurcation of the p-Laplacian in RN
    Kim, In-Sook
    Kim, Yun-Ho
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (07) : 2685 - 2690
  • [35] The spectrum of the p-Laplacian with singular weight
    Montenegro, Marcelo
    Lorca, Sebastian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (09) : 3746 - 3753
  • [36] Fractional p-Laplacian evolution equations
    Mazon, Jose M.
    Rossi, Julio D.
    Toledo, Julian
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 105 (06): : 810 - 844
  • [37] A RESONANCE PROBLEM FOR THE P-LAPLACIAN IN RN
    Izquierdo Buenrostro, Gustavo
    Lopez Garza, Gabriel
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2005,
  • [38] Sandwich pairs for p-Laplacian systems
    Perera, Kanishka
    Schechter, Martin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 358 (02) : 485 - 490
  • [39] Nontrivial solutions for p-Laplacian systems
    Hai, D. D.
    Wang, Haiyan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (01) : 186 - 194
  • [40] MAXIMAL OPERATORS FOR THE p-LAPLACIAN FAMILY
    Blanc, Pablo
    Pinasco, Juan P.
    Rossi, Julio D.
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 287 (02) : 257 - 295