A Weyl law for the p-Laplacian

被引:0
|
作者
Mazurowski, Liam [1 ]
机构
[1] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
关键词
p-Laplacian; Weyl law; Non-linear eigenvalues;
D O I
10.1016/j.jfa.2024.110734
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a Weyl law holds for the variational spectrum of the p-Laplacian. More precisely, let (lambda(i))(i=1)(infinity) be the variational spectrum of Delta(p) on a closed Riemannian manifold (X, g) and let N(lambda) = #{i: lambda(i )< lambda} be the associated counting function. Then we have a Weyl law N(lambda)similar to c vol(X)lambda(n/p). This confirms a conjecture of Friedlander. The proof is based on ideas of Gromov [5] and Liokumovich, Marques, Neves [7]. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Boundedness of solutions of nonlinear p-Laplacian
    Yang, XJ
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 158 (02) : 397 - 417
  • [22] On the monotonicity of the principal frequency of the p-Laplacian
    Bocea, Marian
    Mihailescu, Mihai
    ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (01) : 147 - 152
  • [23] Boundedness of the first eigenvalue of the p-Laplacian
    Matei, AM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (07) : 2183 - 2192
  • [24] Eigenvalue Problem For Perturbated p-Laplacian
    Latifi, Mehdi
    Alimohammady, Mohsen
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (01): : 35 - 54
  • [25] THE DUAL EIGENVALUE PROBLEMS FOR p-LAPLACIAN
    Cheng, Y. -H.
    Lian, W. -C.
    Wang, W. -C.
    ACTA MATHEMATICA HUNGARICA, 2014, 142 (01) : 132 - 151
  • [26] Weak solutions for p-Laplacian equation
    Bhuvaneswari, Venkatasubramaniam
    Lingeshwaran, Shangerganesh
    Balachandran, Krishnan
    ADVANCES IN NONLINEAR ANALYSIS, 2012, 1 (04) : 319 - 334
  • [27] Local "superlinearity" and "sublinearity" for the p-Laplacian
    de Figueiredo, Djairo G.
    Gossez, Jean-Pierre
    Ubilla, Pedro
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (03) : 721 - 752
  • [28] Radial solutions for the p-Laplacian equation
    Bachar, Imed
    Ben Othman, Sonia
    Maagli, Habib
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (06) : 2198 - 2205
  • [29] A multiplicity theorem for problems with the p-Laplacian
    Motreanu, D.
    Motreanu, V. V.
    Papageorgiou, N. S.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (04) : 1016 - 1027
  • [30] ORIGIN OF THE p-LAPLACIAN AND A. MISSBACH
    Benedikt, Jiri
    Girg, Petr
    Kotrla, Lukas
    Takac, Peter
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,