A Weyl law for the p-Laplacian

被引:0
|
作者
Mazurowski, Liam [1 ]
机构
[1] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
关键词
p-Laplacian; Weyl law; Non-linear eigenvalues;
D O I
10.1016/j.jfa.2024.110734
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a Weyl law holds for the variational spectrum of the p-Laplacian. More precisely, let (lambda(i))(i=1)(infinity) be the variational spectrum of Delta(p) on a closed Riemannian manifold (X, g) and let N(lambda) = #{i: lambda(i )< lambda} be the associated counting function. Then we have a Weyl law N(lambda)similar to c vol(X)lambda(n/p). This confirms a conjecture of Friedlander. The proof is based on ideas of Gromov [5] and Liokumovich, Marques, Neves [7]. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] LOWER ROUNDS FOR THE FIRST EIGENVALUES OF THE p-LAPLACIAN AND THE WEIGHTED p-LAPLACIAN
    Sun, He-Jun
    Han, Chengyue
    Zeng, Lingzhong
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (02): : 585 - 596
  • [2] On the eigenvectors of p-Laplacian
    Luo, Dijun
    Huang, Heng
    Ding, Chris
    Nie, Feiping
    MACHINE LEARNING, 2010, 81 (01) : 37 - 51
  • [3] Sandwich pairs in p-Laplacian problems
    Perera, Kanishka
    Schechter, Martin
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2007, 29 (01) : 29 - 34
  • [4] CONTINUITY OF THE VARIATIONAL EIGENVALUES OF THE p-LAPLACIAN WITH RESPECT TO p
    Parini, Enea
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 83 (03) : 376 - 381
  • [5] ON MULTIPLICITY OF EIGENVALUES AND SYMMETRY OF EIGENFUNCTIONS OF THE p-LAPLACIAN
    Audoux, Benjamin
    Bobkov, Vladimir
    Parini, Enea
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2018, 51 (02) : 565 - 582
  • [6] Existence problems for the p-Laplacian
    Edward, Julian
    Hudson, Steve
    Leckband, Mark
    FORUM MATHEMATICUM, 2015, 27 (02) : 1203 - 1225
  • [7] On the Fredholm alternative for the p-Laplacian
    Yang, XJ
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 153 (02) : 537 - 556
  • [8] Spectral stability of the p-Laplacian
    Burenkov, Victor I.
    Lamberti, Pier Domenico
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 2227 - 2235
  • [9] Extremal p-Laplacian eigenvalues
    Antunes, Pedro R. S.
    NONLINEARITY, 2019, 32 (12) : 5087 - 5109
  • [10] Introducing the p-Laplacian spectra
    Cohen, Ido
    Gilboa, Guy
    SIGNAL PROCESSING, 2020, 167 (167)