A Six-Phase Harmonic-Rejection Digital Transmitter

被引:0
作者
Li, Jiaxiang [1 ]
Li, Zimu [1 ]
Yin, Yun [1 ]
Yan, Changgu [1 ]
Qi, Nan [2 ]
Liu, Ming [1 ]
Xu, Hongtao [1 ]
机构
[1] Fudan Univ, State Key Lab Integrated Chips & Syst, Shanghai 201203, Peoples R China
[2] Univ Chinese Acad Sci, Chinese Acad Sci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Harmonic analysis; Computer architecture; Power generation; Switches; Power amplifiers; Microprocessors; Voltage; Vectors; Modulation; Transmitters; six-phase; cell-reused; digital transmitter (DTX); Doherty; harmonic rejection; multi-phase injection locking (MPIL);
D O I
10.1109/JSSC.2024.3516197
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a six-phase cell-reused digital transmitter (DTX) using 1/3 duty-cycle local oscillator (LO) signals for harmonic rejection. The 1/3 duty-cycle square wave ideally generates no 3rd-order component, thus facilitating the on-chip method to improve 3rd-order harmonic rejection (HR3). The six-phase architecture is realized with cell-reused technique and Doherty load modulation to produce higher output power and 18 efficiency peaks on the complex plane. Switch-off resistance control is implemented in the digital power amplifier (DPA) to optimize its linearity. A multi-phase injection-locking (MPIL)-based multi-phase LO generator (MPLG) is introduced for accurate and low-noise LO generation. Fabricated in 28-nm CMOS technology with a compact core size of 0.86 mm (2 ), this DTX realizes 28.3-and 27.7-dBm peak output power with 41.0% and 28.5% peak system efficiency (SE) at 0.9 and 1.7 GHz, respectively. The MPLG achieves < 1 degrees average phase error and the DTX with the 1/3 duty-cycle LOs offers more than 45-dBc HR3 over 0.7-2.5 GHz. For the LTE 20-MHz 64-QAM signal, it obtains 24.2-dBm P-avg , 27.1% average SE with - 24.8-dB error vector magnitude (EVM) at 0.89 GHz. As for the orthogonal frequency division multiplexing (OFDM) 40-MHz 256-QAM signal, the DTX obtains 22.5-dBm P-avg , 14.0% average SE with $-$ 27.6-dB EVM at 1.76 GHz.
引用
收藏
页数:12
相关论文
共 32 条
  • [1] A Wideband 2x13-bit All-Digital I/Q RF-DAC
    Alavi, Morteza S.
    Staszewski, Robert Bogdan
    de Vreede, Leo C. N.
    Long, John R.
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2014, 62 (04) : 732 - 752
  • [2] Araei S., 2024, IEEE INT SOLID STATE, P90, DOI [10.1109/ISSCC49657.2024, DOI 10.1109/ISSCC49657.2024]
  • [3] Ba A, 2018, IEEE RAD FREQ INTEGR, P308, DOI 10.1109/RFIC.2018.8428999
  • [4] Bai ZD, 2019, ISSCC DIG TECH PAP I, V62, P78, DOI 10.1109/ISSCC.2019.8662430
  • [5] Split-Array, C-2C Switched-Capacitor Power Amplifiers
    Bai, Zhidong
    Azam, Ali
    Johnson, Dallas
    Yuan, Wen
    Walling, Jeffrey S.
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (06) : 1666 - 1677
  • [6] A 4-Way Doherty Digital Transmitter Featuring 50%-LO Signed IQ Interleave Upconversion with more than 27dBm Peak Power and 40% Drain Efficiency at 10dB Power Back-Off Operating in the 5GHz
    Beikmirza, Mohammadreza
    Shen, Yiyu
    Mehrpoo, Mohammadreza
    Hashemi, Mohsen
    Mul, Dieuwert
    de Vreede, Leo C. N.
    Alavi, Morteza S.
    [J]. 2021 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2021, 64 : 92 - +
  • [7] A Fully Integrated 27-dBm Dual-Band All-Digital Polar Transmitter Supporting 160 MHz for Wi-Fi 6 Applications
    Ben-Bassat, Assaf
    Gross, Shahar
    Lane, Aaron
    Nazimov, Anna
    Khamaisi, Bassam
    Solomon, Elad
    Banin, Elan
    Borokhovich, Eli
    Kimiagorov, Nahum
    Dinur, Nati
    Skliar, Phillip
    Cohen, Roi
    Banin, Rotem
    Zur, Sarit
    Reinhold, Sebastian
    Breuer-Bruker, Smadar
    Abuhazira, Tomer
    Livneh, Tom
    Maimon, Tzvi
    Parker, Uri
    Ravi, Ashoke
    Degani, Ofir
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (12) : 3414 - 3425
  • [8] Chen S, 2018, ISSCC DIG TECH PAP I, P390, DOI 10.1109/ISSCC.2018.8310348
  • [9] Deng ZM, 2016, ISSCC DIG TECH PAP I, V59, P172, DOI 10.1109/ISSCC.2016.7417962
  • [10] Huang CX, 2016, IEEE RAD FREQ INTEGR, P214, DOI 10.1109/RFIC.2016.7508289