Programmable optical window bonding enabled 3D printing of high-resolution transparent microfluidic devices for biomedical applications

被引:0
作者
Ye, Mengguang [1 ]
Xue, Yuxiang [1 ]
Zhao, Hongyu [2 ]
Hazelton, Patricia [1 ]
Ji, Yuxuan [1 ]
Mchale, Glen [2 ]
Chen, Xianfeng [1 ]
机构
[1] Univ Edinburgh, Inst Bioengn, Sch Engn, Edinburgh EH9 3JL, Scotland
[2] Univ Edinburgh, Inst Multiscale Thermofluids, Sch Engn, Edinburgh, Scotland
来源
DROPLET | 2025年 / 4卷 / 01期
关键词
FABRICATION;
D O I
10.1002/dro2.153
中图分类号
O59 [应用物理学];
学科分类号
摘要
Traditional technologies for manufacturing microfluidic devices often involve the use of molds for polydimethylsiloxane (PDMS) casting generated from photolithography techniques, which are time-consuming, costly, and difficult to use in generating multilayered structure. As an alternative, 3D printing allows rapid and cost-effective prototyping and customization of complex microfluidic structures. However, 3D-printed devices are typically opaque and are challenging to create small channels. Herein, we introduce a novel "programmable optical window bonding" 3D printing method that incorporates the bonding of an optical window during the printing process, facilitating the fabrication of transparent microfluidic devices with high printing fidelity. Our approach allows direct and rapid manufacturing of complex microfluidic structure without the use of molds for PDMS casting. We successfully demonstrated the applications of this method by fabricating a variety of microfluidic devices, including perfusable chips for cell culture, droplet generators for spheroid formation, and high-resolution droplet microfluidic devices involving different channel width and height for rapid antibiotic susceptibility testing. Overall, our 3D printing method demonstrates a rapid and cost-effective approach for manufacturing microfluidic devices, particularly in the biomedical field, where rapid prototyping and high-quality optical analysis are crucial.
引用
收藏
页数:11
相关论文
共 24 条
[1]   3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design [J].
Balakrishnan, Hari Kalathil ;
Badar, Faizan ;
Doeven, Egan H. ;
Novak, James, I ;
Merenda, Andrea ;
Dumee, Ludovic F. ;
Loy, Jennifer ;
Guijt, Rosanne M. .
ANALYTICAL CHEMISTRY, 2021, 93 (01) :350-366
[2]   Biocompatible High-Resolution 3D-Printed Microfluidic Devices: Integrated Cell Chemotaxis Demonstration [J].
Boaks, Mawla ;
Roper, Connor ;
Viglione, Matthew ;
Hooper, Kent ;
Woolley, Adam T. ;
Christensen, Kenneth A. ;
Nordin, Gregory P. .
MICROMACHINES, 2023, 14 (08)
[3]   3D-Printed Chips: Compatibility of Additive Manufacturing Photopolymeric Substrata with Biological Applications [J].
Carve, Megan ;
Wlodkowic, Donald .
MICROMACHINES, 2018, 9 (02)
[4]   Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips [J].
Chan, Ho Nam ;
Chen, Yangfan ;
Shu, Yiwei ;
Chen, Yin ;
Tian, Qian ;
Wu, Hongkai .
MICROFLUIDICS AND NANOFLUIDICS, 2015, 19 (01) :9-18
[5]   3D-printed microfluidic devices: fabrication, advantages and limitations-a mini review [J].
Chen, Chengpeng ;
Mehl, Benjamin T. ;
Munshi, Akash S. ;
Townsend, Alexandra D. ;
Spence, Dana M. ;
Martin, R. Scott .
ANALYTICAL METHODS, 2016, 8 (31) :6005-6012
[6]   PDMS lab-on-a-chip fabrication using 3D printed templates [J].
Comina, German ;
Suska, Anke ;
Filippini, Daniel .
LAB ON A CHIP, 2014, 14 (02) :424-430
[7]   Potential Health and Environmental Risks of Three-Dimensional Engineered Polymers [J].
Ferraz, Marcia de Almeida Monteiro Melo ;
Henning, Heiko H. W. ;
da Costa, Pedro Ferreira ;
Malda, Jos ;
Le Gac, Severine ;
Bray, Fabrice ;
van Duursen, Majorie B. M. ;
Brouwers, Jos F. ;
van de Lest, Chris H. A. ;
Bertijn, Ingeborg ;
Kraneburg, Lisa ;
Vos, Peter L. A. M. ;
Stout, Tom A. E. ;
Gadella, Barend M. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2018, 5 (02) :80-85
[8]   Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip [J].
Fritschen, Anna ;
Bell, Alena K. ;
Koenigstein, Inga ;
Stuehn, Lukas ;
Stark, Robert W. ;
Blaeser, Andreas .
BIOMATERIALS SCIENCE, 2022, 10 (08) :1981-1994
[9]  
Gibson I., 2021, Additive Manufacturing Technologies
[10]   Optical approach to resin formulation for 3D printed microfluidics [J].
Gong, Hua ;
Beauchamp, Michael ;
Perry, Steven ;
Woolley, Adam T. ;
Nordin, Gregory P. .
RSC ADVANCES, 2015, 5 (129) :106621-106632