Select microbial metabolites in the small intestinal lumen regulates vagal activity via receptor-mediated signaling

被引:1
作者
Jameson, Kelly G. [1 ]
Kazmi, Sabeen A. [1 ]
Ohara, Takahiro E. [1 ]
Son, Celine [1 ]
Yu, Kristie B. [1 ]
Mazdeyasnan, Donya [1 ]
Leshan, Emma [1 ]
Vuong, Helen E. [1 ,4 ]
Paramo, Jorge [2 ]
Lopez-Romero, Arlene [2 ]
Yang, Long [2 ,3 ]
Schweizer, Felix E. [2 ,3 ]
Hsiao, Elaine Y. [1 ,2 ]
Leshan, Emma [1 ]
Vuong, Helen E. [1 ,4 ]
Paramo, Jorge [2 ]
Lopez-Romero, Arlene [2 ]
Yang, Long [2 ,3 ]
Schweizer, Felix E. [2 ,3 ]
Hsiao, Elaine Y. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Integrat Biol & Physiol, Los Angeles, CA 90095 USA
[2] UCLA Goodman Luskin Microbiome Ctr, David Geffen Sch Med, Dept Med, Div Digest Dis, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Neurobiol, Los Angeles, CA 90095 USA
[4] Univ Minnesota, Med Sch, Dept Pediat, Minneapolis, MN USA
关键词
CHAIN FATTY-ACIDS; DIET-INDUCED OBESITY; GUT MICROBIOTA; ENTEROENDOCRINE CELLS; SENSORY NEURONS; BILE-ACIDS; SECRETION; TRPA1; IDENTIFICATION; ACTIVATION;
D O I
10.1016/j.isci.2024.111699
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The vagus nerve is proposed to enable communication between the gut microbiome and the brain, but activity-based evidence is lacking. We find that mice reared germ-free exhibit decreased vagal tone relative to colonized controls, which is reversed via microbiota restoration. Perfusing antibiotics into the small intestines of conventional mice, but not germ-free mice, acutely decreases vagal activity which is restored upon re-perfusion with intestinal filtrates from conventional, but not germ-free, mice. Microbiome-dependent short-chain fatty acids, bile acids, and 3-indoxyl sulfate indirectly stimulate vagal activity in a receptor- dependent manner. Serial perfusion of each metabolite class activates both shared and distinct neuronal subsets with varied response kinetics. Metabolite-induced and receptor-dependent increases in vagal activity correspond with the activation of brainstem neurons. Results from this study reveal that the gut micro- biome regulates select metabolites in the intestinal lumen that differentially activate vagal afferent neurons, thereby enabling the microbial modulation of chemosensory signals for gut-brain communication.
引用
收藏
页数:25
相关论文
共 125 条
  • [1] Chronic high fat diet impairs glucagon like peptide-1 sensitivity in vagal afferents
    Al Helaili, Alaa
    Park, Sung Jin
    Beyak, Michael J.
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 533 (01) : 110 - 117
  • [2] Food intake, water intake, and drinking spout side preference of 28 mouse strains
    Bachmanov, AA
    Reed, DR
    Beauchamp, GD
    Tordoff, MG
    [J]. BEHAVIOR GENETICS, 2002, 32 (06) : 435 - 443
  • [3] Genetic Identification of Vagal Sensory Neurons That Control Feeding
    Bai, Ling
    Mesgarzadeh, Sheyda
    Ramesh, Karthik S.
    Huey, Erica L.
    Liu, Yin
    Gray, Lindsay A.
    Aitken, Tara J.
    Chen, Yiming
    Beutler, Lisa R.
    Ahn, Jamie S.
    Madisen, Linda
    Zeng, Hongkui
    Krasnow, Mark A.
    Knight, Zachary A.
    [J]. CELL, 2019, 179 (05) : 1129 - +
  • [4] Release of GLP-1 and PYY in response to the activation of G protein-coupled bile acid receptor TGR5 is mediated by Epac/PLC-ε pathway and modulated by endogenous H2S
    Bala, Vanitha
    Rajagopal, Senthilkumar
    Kumar, Divya P.
    Nalli, Ancy D.
    Mahavadi, Sunila
    Sanyal, Arun J.
    Grider, John R.
    Murthy, Karnam S.
    [J]. FRONTIERS IN PHYSIOLOGY, 2014, 5
  • [5] Enterochromaffin Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways
    Bellono, Nicholas W.
    Bayrer, James R.
    Leitch, Duncan B.
    Castro, Joel
    Zhang, Chuchu
    O'Donnell, Tracey A.
    Brierley, Stuart M.
    Ingraham, Holly A.
    Julius, David
    [J]. CELL, 2017, 170 (01) : 185 - 198.e16
  • [6] The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication
    Bercik, P.
    Park, A. J.
    Sinclair, D.
    Khoshdel, A.
    Lu, J.
    Huang, X.
    Deng, Y.
    Blennerhassett, P. A.
    Fahnestock, M.
    Moine, D.
    Berger, B.
    Huizinga, J. D.
    Kunze, W.
    McLean, P. G.
    Bergonzelli, G. E.
    Collins, S. M.
    Verdu, E. F.
    [J]. NEUROGASTROENTEROLOGY AND MOTILITY, 2011, 23 (12) : 1132 - E544
  • [7] Functional and chemical anatomy of the afferent vagal system
    Berthoud, HR
    Neuhuber, WL
    [J]. AUTONOMIC NEUROSCIENCE-BASIC & CLINICAL, 2000, 85 (1-3): : 1 - 17
  • [8] Beumer J, 2020, CELL, V181, P1291, DOI [10.1016/j.cell.2020.04.036, 10.1016/j.cell.2020.08.005]
  • [9] The vagus nerve is necessary for the rapid and widespread neuronal activation in the brain following oral administration of psychoactive bacteria
    Bharwani, Aadil
    West, Christine
    Champagne-Jorgensen, Kevin
    Neufeld, Karen Anne McVey
    Ruberto, Joseph
    Kunze, Wolfgang A.
    Bienenstock, John
    Forsythe, Paul
    [J]. NEUROPHARMACOLOGY, 2020, 170
  • [10] Molecular mechanisms of antibiotic resistance
    Blair, Jessica M. A.
    Webber, Mark A.
    Baylay, Alison J.
    Ogbolu, David O.
    Piddock, Laura J. V.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2015, 13 (01) : 42 - 51