SUPER-RESOLUTION RECONSTRUCTION OF UAV IMAGES FOR MAIZE TASSEL DETECTION

被引:0
作者
Yu, Lei [1 ]
Zhu, Deli [1 ]
Xu, Zhao [1 ]
Fu, Haibin [1 ]
机构
[1] Chongqing Normal Univ, Chongqing, Peoples R China
来源
JOURNAL OF THE ASABE | 2025年 / 68卷 / 01期
关键词
Generative adversarial network; Maize image; Super-resolution; Tassel detection; UAV;
D O I
10.13031/ja.16045
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The Unmanned Aerial Vehicle (UAV) technology provides essential technical support for maize (Zea mays) cultivation in smart agriculture. To address the challenge of low resolution in UAV maize images due to factors such as flight altitude and instrument parameters, which impact the accurate monitoring and assessment of maize crop growth and further tassel detection tasks, this study proposes an improved enhanced super-resolution generative adversarial network for super-resolution reconstruction of UAV maize images. Firstly, Iterative Attention Feature Fusion is introduced in the generation network, effectively integrating the features of maize and restoring high-frequency details in maize images. Subsequently, the Iterative Attention Feature Fusion is optimized by removing batch normalization and replacing the ReLU activation function with the PReLU activation function, thereby enhancing the model's representation capability. Furthermore, to address the complex features and structures of tassels in maize images, the VGG discriminator network is replaced with a Unet network, thereby improving the model's ability to handle image details and textures. Finally, the model was validated and analyzed on different maize image datasets. Experimental results show that compared with other mainstream super-resolution models, the reconstructed images of our model proposed exhibit higher quality and clarity; for maize tassel detection, the average accuracy of tassel detection in the images reconstructed by our model compared with the low-resolution images was increased by 8.77%similar to 25.71%. This provides a more accurate and clear UAV monitoring method for maize agricultural production and provides more reliable image data support for related decisions and applications.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [41] Super-resolution on Remote Sensing Images
    Yang, Yuting
    Lam, Kin-Man
    Dong, Junyu
    Sun, Xin
    Jian, Muwei
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY (IWAIT) 2021, 2021, 11766
  • [42] Super-resolution algorithms for SAR images
    Guglielmi, V
    Castanie, F
    Piau, P
    IMAGE RECONSTRUCTION AND RESTORATION II, 1997, 3170 : 195 - 202
  • [43] Super-resolution of Defocus Blurred Images
    Seyyedyazdi, S. J.
    Hassanpour, H.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (04): : 539 - 545
  • [44] Stochastic super-resolution image reconstruction
    Tian, Jing
    Ma, Kai-Kuang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2010, 21 (03) : 232 - 244
  • [45] A new method for super-resolution reconstruction
    Zhang, Dong
    Xie, Cunxie
    2006 IMACS: MULTICONFERENCE ON COMPUTATIONAL ENGINEERING IN SYSTEMS APPLICATIONS, VOLS 1 AND 2, 2006, : 65 - 67
  • [46] Super-resolution reconstruction of image sequences
    Elad, M
    Feuer, A
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (09) : 817 - 834
  • [47] Further improvement of super-resolution reconstruction
    Ho, Edward Y. T.
    Todd-Pokropek, Andrew E.
    WORLD CONGRESS ON ENGINEERING 2007, VOLS 1 AND 2, 2007, : 719 - +
  • [48] Super-resolution of Omnidirectional Images Using Adversarial Learning
    Ozcinar, Cagri
    Rana, Aakanksha
    Smolic, Aljosa
    2019 IEEE 21ST INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP 2019), 2019,
  • [49] Super-Resolution of Medical Images Using Real ESRGAN
    Nandal, Priyanka
    Pahal, Sudesh
    Khanna, Ashish
    Rogerio Pinheiro, Placido
    IEEE ACCESS, 2024, 12 : 176155 - 176170
  • [50] Super-resolution of remotely sensed images with variable-pixel linear reconstruction
    Teresa Merino, Maria
    Nunez, Jorge
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (05): : 1446 - 1457