SUPER-RESOLUTION RECONSTRUCTION OF UAV IMAGES FOR MAIZE TASSEL DETECTION

被引:0
|
作者
Yu, Lei [1 ]
Zhu, Deli [1 ]
Xu, Zhao [1 ]
Fu, Haibin [1 ]
机构
[1] Chongqing Normal Univ, Chongqing, Peoples R China
来源
JOURNAL OF THE ASABE | 2025年 / 68卷 / 01期
关键词
Generative adversarial network; Maize image; Super-resolution; Tassel detection; UAV;
D O I
10.13031/ja.16045
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The Unmanned Aerial Vehicle (UAV) technology provides essential technical support for maize (Zea mays) cultivation in smart agriculture. To address the challenge of low resolution in UAV maize images due to factors such as flight altitude and instrument parameters, which impact the accurate monitoring and assessment of maize crop growth and further tassel detection tasks, this study proposes an improved enhanced super-resolution generative adversarial network for super-resolution reconstruction of UAV maize images. Firstly, Iterative Attention Feature Fusion is introduced in the generation network, effectively integrating the features of maize and restoring high-frequency details in maize images. Subsequently, the Iterative Attention Feature Fusion is optimized by removing batch normalization and replacing the ReLU activation function with the PReLU activation function, thereby enhancing the model's representation capability. Furthermore, to address the complex features and structures of tassels in maize images, the VGG discriminator network is replaced with a Unet network, thereby improving the model's ability to handle image details and textures. Finally, the model was validated and analyzed on different maize image datasets. Experimental results show that compared with other mainstream super-resolution models, the reconstructed images of our model proposed exhibit higher quality and clarity; for maize tassel detection, the average accuracy of tassel detection in the images reconstructed by our model compared with the low-resolution images was increased by 8.77%similar to 25.71%. This provides a more accurate and clear UAV monitoring method for maize agricultural production and provides more reliable image data support for related decisions and applications.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] Super-resolution landmark detection networks for medical images
    Zhang, Runshi
    Mo, Hao
    Hu, Weini
    Jie, Bimeng
    Xu, Lin
    He, Yang
    Ke, Jia
    Wang, Junchen
    Computers in Biology and Medicine, 2024, 182
  • [22] Super-resolution reconstruction using insufficient number of low-resolution images
    Misaizu, Hiroyuki
    Inamura, Minoru
    IMETI 2008: INTERNATIONAL MULTI-CONFERENCE ON ENGINEERING AND TECHNOLOGICAL INNOVATION, VOL II, PROCEEDINGS, 2008, : 261 - +
  • [23] Super-Resolution of Multispectral Images
    Vega, M.
    Mateos, J.
    Molina, R.
    Katsaggelos, A. K.
    COMPUTER JOURNAL, 2009, 52 (01) : 153 - 167
  • [24] Super-Resolution Reconstruction of Optical Coherence Tomography Retinal Images by Generating Adversarial Network
    Ke Shuting
    Chen Minghui
    Zheng Zexi
    Yuan Yuan
    Wang Teng
    He Longxi
    Lu Linjie
    Sun Hao
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2022, 49 (15):
  • [25] Parametric regularization loss in super-resolution reconstruction
    Viriyavisuthisakul, Supatta
    Kaothanthong, Natsuda
    Sanguansat, Parinya
    Le Nguyen, Minh
    Haruechaiyasak, Choochart
    MACHINE VISION AND APPLICATIONS, 2022, 33 (05)
  • [26] Parametric regularization loss in super-resolution reconstruction
    Supatta Viriyavisuthisakul
    Natsuda Kaothanthong
    Parinya Sanguansat
    Minh Le Nguyen
    Choochart Haruechaiyasak
    Machine Vision and Applications, 2022, 33
  • [27] Edge-Enhanced Super-Resolution Reconstruction of Rock CT Images
    Gao, Chennian
    Qiu, Chen
    PATTERN RECOGNITION AND COMPUTER VISION, PT IX, PRCV 2024, 2025, 15039 : 276 - 289
  • [28] A hybrid convolutional neural network for super-resolution reconstruction of MR images
    Zheng, Yingjie
    Zhen, Bowen
    Chen, Aichi
    Qi, Fulang
    Hao, Xiaohan
    Qiu, Bensheng
    MEDICAL PHYSICS, 2020, 47 (07) : 3013 - 3022
  • [29] PlantSR: Super-Resolution Improves Object Detection in Plant Images
    Jiang, Tianyou
    Yu, Qun
    Zhong, Yang
    Shao, Mingshun
    JOURNAL OF IMAGING, 2024, 10 (06)
  • [30] Automatic detection in a maritime environment using super-resolution images
    van Valkenburg-van Haarst, Tanja Y. C.
    Scholte, Krispijn A.
    ELECTRO-OPTICAL AND INFRARED SYSTEMS: TECHNOLOGY AND APPLICATIONS VII, 2010, 7834