SUPER-RESOLUTION RECONSTRUCTION OF UAV IMAGES FOR MAIZE TASSEL DETECTION

被引:0
|
作者
Yu, Lei [1 ]
Zhu, Deli [1 ]
Xu, Zhao [1 ]
Fu, Haibin [1 ]
机构
[1] Chongqing Normal Univ, Chongqing, Peoples R China
来源
JOURNAL OF THE ASABE | 2025年 / 68卷 / 01期
关键词
Generative adversarial network; Maize image; Super-resolution; Tassel detection; UAV;
D O I
10.13031/ja.16045
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The Unmanned Aerial Vehicle (UAV) technology provides essential technical support for maize (Zea mays) cultivation in smart agriculture. To address the challenge of low resolution in UAV maize images due to factors such as flight altitude and instrument parameters, which impact the accurate monitoring and assessment of maize crop growth and further tassel detection tasks, this study proposes an improved enhanced super-resolution generative adversarial network for super-resolution reconstruction of UAV maize images. Firstly, Iterative Attention Feature Fusion is introduced in the generation network, effectively integrating the features of maize and restoring high-frequency details in maize images. Subsequently, the Iterative Attention Feature Fusion is optimized by removing batch normalization and replacing the ReLU activation function with the PReLU activation function, thereby enhancing the model's representation capability. Furthermore, to address the complex features and structures of tassels in maize images, the VGG discriminator network is replaced with a Unet network, thereby improving the model's ability to handle image details and textures. Finally, the model was validated and analyzed on different maize image datasets. Experimental results show that compared with other mainstream super-resolution models, the reconstructed images of our model proposed exhibit higher quality and clarity; for maize tassel detection, the average accuracy of tassel detection in the images reconstructed by our model compared with the low-resolution images was increased by 8.77%similar to 25.71%. This provides a more accurate and clear UAV monitoring method for maize agricultural production and provides more reliable image data support for related decisions and applications.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Super-resolution reconstruction of hyperspectral images
    Akgun, T
    Altunbasak, Y
    Mersereau, RM
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (11) : 1860 - 1875
  • [2] Super-Resolution Reconstruction Algorithm of Images Based on Improved Enhanced Super-Resolution Generative Adversarial Network
    Xin Yuanxue
    Zhu Fengting
    Shi Pengfei
    Yang Xin
    Zhou Runkang
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (04)
  • [3] Evaluating super-resolution reconstruction of satellite images
    Benecki, Pawel
    Kawulok, Michal
    Kostrzewa, Daniel
    Skonieczny, Lukasz
    ACTA ASTRONAUTICA, 2018, 153 : 15 - 25
  • [4] A super-resolution reconstruction algorithm for hyperspectral images
    Zhang, Hongyan
    Zhang, Liangpei
    Shen, Huanfeng
    SIGNAL PROCESSING, 2012, 92 (09) : 2082 - 2096
  • [5] Super-Resolution Reconstruction of Thermal Infrared Images
    Panagiotopoulou, Antigoni
    Anastassopoulos, Vassilis
    PROCEEDINGS OF THE 4TH WSEAS INTERNATIONAL CONFERENCE ON REMOTE SENSING (REMOTE'08): RECENT ADVANCES IN REMOTE SENSING, 2008, : 40 - 44
  • [6] A super-resolution reconstruction algorithm for surveillance images
    Zhang, Liangpei
    Zhang, Hongyan
    Shen, Huanfeng
    Li, Pingxiang
    SIGNAL PROCESSING, 2010, 90 (03) : 848 - 859
  • [7] Research on Super-Resolution Reconstruction Algorithm of Cultural Relic Images
    Liu J.
    Ge Y.-F.
    Tian M.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (01): : 139 - 145
  • [8] Super-resolution reconstruction of micro-scanning images
    Zhao H.-G.
    Qu H.-S.
    Wang X.
    Shang Y.
    Liu L.-G.
    Han S.-W.
    Meng S.
    Wang P.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2021, 29 (10): : 2456 - 2464
  • [9] Super-resolution Reconstruction for Sequential License Plate Images
    Ye, Yao
    Xing, Zhong
    Yue, Ge
    NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420
  • [10] Super-Resolution Reconstruction in MRI: Better Images Faster?
    Plenge, Esben
    Poot, Dirk H. J.
    Bernsen, Monique
    Kotek, Gyula
    Houston, Gavin
    Wielopolski, Piotr
    van der Weerd, Louise
    Niessen, Wiro J.
    Meijering, Erik
    MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314