Symmetry Classes of Classical Stochastic Processes

被引:0
作者
Sa, Lucas [1 ]
Ribeiro, Pedro [2 ,3 ]
Prosen, Tomaz [4 ,5 ]
Bernard, Denis [6 ,7 ]
机构
[1] Univ Cambridge, Cavendish Lab, TCM Grp, JJ Thomson Ave, Cambridge CB3 0HE, England
[2] Univ Lisbon, CeFEMA, Inst Super Tecn, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[3] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[4] Univ Ljubljana, Fac Math & Phys, Dept Phys, Ljubljana 1000, Slovenia
[5] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
[6] Univ Paris Cite, ENS, Sorbonne Univ, Lab Phys,Ecole Normale Super,CNRS, F-75005 Paris, France
[7] Univ Paris Cite, PSL Univ, Sorbonne Univ, F-75005 Paris, France
基金
欧洲研究理事会;
关键词
Stochastic processes; Symmetry classes; Markov generator; Non-Hermitian physics; QCD DIRAC OPERATOR; DUALITY;
D O I
10.1007/s10955-025-03423-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We perform a systematic symmetry classification of the Markov generators of classical stochastic processes. Our classification scheme is based on the action of involutive symmetry transformations of a real Markov generator, extending the Bernard-LeClair scheme to the arena of classical stochastic processes and leading to a set of up to fifteen allowed symmetry classes. We construct families of solutions of arbitrary matrix dimensions for five of these classes with a simple physical interpretation of particles hopping on multipartite graphs. In the remaining classes, such a simple construction is prevented by the positivity of entries of the generator particular to classical stochastic processes, which imposes a further requirement beyond the usual symmetry classification constraints. We partially overcome this difficulty by resorting to a stochastic optimization algorithm, finding specific examples of generators of small matrix dimensions in six further classes, leaving the existence of the final four allowed classes an open problem. Our symmetry-based results unveil new possibilities in the dynamics of classical stochastic processes: Kramers degeneracy of eigenvalue pairs, dihedral symmetry of the spectra of Markov generators, and time reversal properties of stochastic trajectories and correlation functions.
引用
收藏
页数:26
相关论文
共 20 条
  • [1] Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures
    Altland, A
    Zirnbauer, MR
    [J]. PHYSICAL REVIEW B, 1997, 55 (02): : 1142 - 1161
  • [2] Symmetry Classes of Open Fermionic Quantum Matter
    Altland, Alexander
    Fleischhauer, Michael
    Diehl, Sebastian
    [J]. PHYSICAL REVIEW X, 2021, 11 (02):
  • [3] Bernard D., 2002, Statistical Field Theories. Proceedings of the NATO Advanced Research Workshop, P207
  • [4] Brzin E., 2011, The Oxford Handbook on Random Matrix Theory
  • [5] Toward a classification of PT-symmetric quantum systems: From dissipative dynamics to topology and wormholes
    Garcia-Garcia, Antonio M.
    Sa, Lucas
    Verbaarschot, Jacobus J. M.
    Yin, Can
    [J]. PHYSICAL REVIEW D, 2024, 109 (10)
  • [6] Symmetry Classification and Universality in Non-Hermitian Many-Body Quantum Chaos by the Sachdev-Ye-Kitaev Model
    Garcia-Garcia, Antonio M.
    Sa, Lucas
    Verbaarschot, Jacobus J. M.
    [J]. PHYSICAL REVIEW X, 2022, 12 (02)
  • [7] Duality and Hidden Symmetries in Interacting Particle Systems
    Giardina, Cristian
    Kurchan, Jorge
    Redig, Frank
    Vafayi, Kiamars
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2009, 135 (01) : 25 - 55
  • [8] Haake F., 2013, Quantum Signatures of Chaos
  • [9] Symmetry of Open Quantum Systems: Classification of Dissipative Quantum Chaos
    Kawabata, Kohei
    Kulkarni, Anish
    Li, Jiachen
    Numasawa, Tokiro
    Ryu, Shinsei
    [J]. PRX QUANTUM, 2023, 4 (03):
  • [10] Symmetry and Topology in Non-Hermitian Physics
    Kawabata, Kohei
    Shiozaki, Ken
    Ueda, Masahito
    Sato, Masatoshi
    [J]. PHYSICAL REVIEW X, 2019, 9 (04)