MAGO SOFTWARE: USING COPERNICUS DATA FOR LAND COVER/CROP TYPE MAPPING AND CROP WATER DEMAND ESTIMATION

被引:0
|
作者
Falagas, Alexandros [1 ]
Gounari, Olympia [1 ]
Karakizi, Christina [2 ]
Karantzalos, Konstantinos [1 ]
机构
[1] Natl Tech Univ Athens, Remote Sensing Lab, Zografos 15780, Greece
[2] Manchester Metropolitan Univ, Dept Nat Sci, Manchester M1 5GD, Lancs, England
关键词
Water Management; Open-Source; Evapotranspiration; Sentinel; Agriculture; ENERGY-BALANCE; EVAPOTRANSPIRATION; FLUXES; MODEL;
D O I
10.1109/IGARSS53475.2024.10640998
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
During the last decade, free and open access to a variety of high spatial, temporal and spectral resolution earth observation (EO) data has brought a revolution in research and operational mapping applications. To this direction, the Prima MAGO (Mediterranean Water Management Solutions for Sustainable Agriculture Supplied by an Online Collaborative Platform) project provides novel solutions utilizing advanced remote sensing techniques, with the aim to enhance integrated water resources management for sustainable agriculture. In this paper, two software applications developed for mapping land cover/crop types and monitoring crop-water demand based on ESA Copernicus Sentinel-2 and Sentinel-3 data are presented. Implementation of the two MAGO software applications is demonstrated for two case studies: (i) mapping land cover in western Montpellier, France and (ii) monitoring crop water demand in the Cap Bon region, Tunisia.
引用
收藏
页码:1268 / 1272
页数:5
相关论文
共 50 条
  • [21] CROP TYPE MAPPING IN BULGARIA USING SENTINEL-1/2 DATA
    Dimitrov, Petar
    Filchev, Lachezar
    Roumenina, Eugenia
    Jelev, Georgi
    AEROSPACE RESEARCH IN BULGARIA, 2021, 33 : 40 - 50
  • [22] Crop water demand estimation and irrigation scheduling for sustainable water management and crop planning in selected watersheds of Meghalaya, India
    Ronghang, Ricky
    Patle, Ghanshyam Tikaram
    Vashisht, Ajay Kumar
    Kusre, Bharat Chandra
    Jhajharia, Deepak
    Kumar, Mukesh
    WATER ENVIRONMENT RESEARCH, 2025, 97 (02)
  • [23] Crop and land cover classification in Iran using Landsat 7 imagery
    Akbari, M.
    Mamanpoush, A. R.
    Gieske, A.
    Miranzadeh, M.
    Torabi, M.
    Salemi, H. R.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (19) : 4117 - 4135
  • [24] Machine learning based crop water demand forecasting using minimum climatological data
    Sidhu, Ravneet Kaur
    Kumar, Ravinder
    Rana, Prashant Singh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (19-20) : 13109 - 13124
  • [25] Deep Learning Based Land Cover and Crop Type Classification: A Comparative Study
    Khan, Asim Hameed
    Fraz, Muhammad Moazam
    Shahzad, Muhammad
    2021 INTERNATIONAL CONFERENCE ON DIGITAL FUTURES AND TRANSFORMATIVE TECHNOLOGIES (ICODT2), 2021,
  • [26] Machine learning based crop water demand forecasting using minimum climatological data
    Ravneet Kaur Sidhu
    Ravinder Kumar
    Prashant Singh Rana
    Multimedia Tools and Applications, 2020, 79 : 13109 - 13124
  • [27] Mapping crop ground cover using airborne multispectral digital imagery
    Nithya Rajan
    Stephan J. Maas
    Precision Agriculture, 2009, 10 : 304 - 318
  • [28] Mapping crop ground cover using airborne multispectral digital imagery
    Rajan, Nithya
    Maas, Stephan J.
    PRECISION AGRICULTURE, 2009, 10 (04) : 304 - 318
  • [29] Estimating crop residue cover using SPOT 5 data
    Wang, C. K.
    Li, Z. T.
    Pan, X. Z.
    JOURNAL OF SOIL AND WATER CONSERVATION, 2017, 72 (04) : 343 - 350
  • [30] Wheat Crop Mapping by Using ASAR AP Data
    Satalino, Giuseppe
    Mattia, Francesco
    Le Toan, Thuy
    Rinaldi, Michele
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (02): : 527 - 530