MAGO SOFTWARE: USING COPERNICUS DATA FOR LAND COVER/CROP TYPE MAPPING AND CROP WATER DEMAND ESTIMATION

被引:0
|
作者
Falagas, Alexandros [1 ]
Gounari, Olympia [1 ]
Karakizi, Christina [2 ]
Karantzalos, Konstantinos [1 ]
机构
[1] Natl Tech Univ Athens, Remote Sensing Lab, Zografos 15780, Greece
[2] Manchester Metropolitan Univ, Dept Nat Sci, Manchester M1 5GD, Lancs, England
关键词
Water Management; Open-Source; Evapotranspiration; Sentinel; Agriculture; ENERGY-BALANCE; EVAPOTRANSPIRATION; FLUXES; MODEL;
D O I
10.1109/IGARSS53475.2024.10640998
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
During the last decade, free and open access to a variety of high spatial, temporal and spectral resolution earth observation (EO) data has brought a revolution in research and operational mapping applications. To this direction, the Prima MAGO (Mediterranean Water Management Solutions for Sustainable Agriculture Supplied by an Online Collaborative Platform) project provides novel solutions utilizing advanced remote sensing techniques, with the aim to enhance integrated water resources management for sustainable agriculture. In this paper, two software applications developed for mapping land cover/crop types and monitoring crop-water demand based on ESA Copernicus Sentinel-2 and Sentinel-3 data are presented. Implementation of the two MAGO software applications is demonstrated for two case studies: (i) mapping land cover in western Montpellier, France and (ii) monitoring crop water demand in the Cap Bon region, Tunisia.
引用
收藏
页码:1268 / 1272
页数:5
相关论文
共 50 条
  • [1] TOWARDS JOINT LAND COVER AND CROP TYPE MAPPING WITH NUMEROUS CLASSES
    Karakizi, Christina
    Antoniou, Georgia
    Karantzalos, Konstantinos
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2980 - 2983
  • [2] Linking Land Cover Data and Crop Yields for Mapping and Assessment of Pollination Services in Europe
    Zulian, Grazia
    Maes, Joachim
    Paracchini, Maria Luisa
    LAND, 2013, 2 (03) : 472 - 492
  • [3] Mapping land cover, soil cultivation and crop establishment for nitrate sensitivity analysis using ERS InSAR data
    Zmuda, A
    Slater, J
    Batts, A
    Seaman, E
    SECOND INTERNATIONAL WORKSHOP ON RETRIEVAL OF BIO- & GEO-PHYSICAL PARAMETERS FROM SAR DATA FOR LAND APPLICATIONS, 1998, 441 : 197 - 202
  • [4] Crop Type and Land Cover Mapping in Northern Malawi Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data
    Kpienbaareh, Daniel
    Sun, Xiaoxuan
    Wang, Jinfei
    Luginaah, Isaac
    Bezner Kerr, Rachel
    Lupafya, Esther
    Dakishoni, Laifolo
    REMOTE SENSING, 2021, 13 (04) : 1 - 21
  • [5] Multiyear Mapping of Water Demand at Crop Level: An End-to-End Workflow Based on High-Resolution Crop Type Maps and Meteorological Data
    Weikmann, Giulio
    Marinelli, Daniele
    Paris, Claudia
    Migdall, Silke
    Gleisberg, Eva
    Appel, Florian
    Bach, Heike
    Dowling, Jim
    Bruzzone, Lorenzo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 6758 - 6775
  • [6] Mapping heterogeneous land use/land cover and crop types in Senegal using sentinel-2 data and machine learning algorithms
    Gumma, Murali Krishna
    Panjala, Pranay
    Teluguntla, Pardhasaradhi
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)
  • [7] LAND COVER MAPPING AND CROP PHENOLOGY OF POTOHAR REGION, PUNJAB, PAKISTAN
    Amir, Sarah
    Saqib, Zafeer
    Khan, Amina
    Khan, M. Irfan
    Khan, M. Azeem
    Majid, Abdul
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2019, 56 (01): : 187 - 196
  • [8] MAPPING AND MONITORING PRINCIPAL CROP LAND COVER/USE CHANGES IN MONGOLIA USING REMOTE SENSING
    Batzorig, Erdenee
    Banzragch, Batbayar
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 2261 - 2263
  • [9] Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data
    Kussul, Nataliia
    Lavreniuk, Mykola
    Skakun, Sergii
    Shelestov, Andrii
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) : 778 - 782
  • [10] Estimating and mapping crop residues cover on agricultural lands using hyperspectral and IKONOS data
    Bannari, A.
    PacheCo, A.
    Staenz, K.
    McNairn, H.
    Omari, K.
    REMOTE SENSING OF ENVIRONMENT, 2006, 104 (04) : 447 - 459