A quantitatively interpretable model for Alzheimer's disease prediction using deep counterfactuals

被引:0
作者
Oh, Kwanseok [1 ]
Heo, Da-Woon [1 ]
Mulyadi, Ahmad Wisnu [2 ]
Jung, Wonsik [2 ]
Kang, Eunsong
Lee, Kun Ho [3 ,4 ,5 ]
Suk, Heung-Il [1 ]
机构
[1] Korea Univ, Dept Artificial Intelligence, Seoul 02841, South Korea
[2] Korea Univ, Dept Brain & Cognit Engn, Seoul 02841, South Korea
[3] Chosun Univ, Gwangju Alzheimers & Related Dementia Cohort Res C, Gwangju 61452, South Korea
[4] Chosun Univ, Dept Biomed Sci, Gwangju 61452, South Korea
[5] Korea Brain Res Inst, Daegu 41062, South Korea
关键词
Alzheimer's disease; Counterfactual reasoning; Quantitative feature-based in-depth analysis; Counterfactual-guided attention; MILD COGNITIVE IMPAIRMENT; ATROPHY; MRI; PROGRESSION; NEUROPATHOLOGY; HIPPOCAMPUS; IMAGES; CORTEX; AD;
D O I
10.1016/j.neuroimage.2025.121077
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Deep learning (DL) for predicting Alzheimer's disease (AD) has provided timely intervention in disease progression yet still demands attentive interpretability to explain how their DL models make definitive decisions. Counterfactual reasoning has recently gained increasing attention in medical research because of its ability to provide a refined visual explanatory map. However, such visual explanatory maps based on visual inspection alone are insufficient unless we intuitively demonstrate their medical or neuroscientific validity via quantitative features. In this study, we synthesize the counterfactual-labeled structural MRIs using our proposed framework and transform it into a gray matter density map to measure its volumetric changes over the parcellated region of interest (ROI). We also devised a lightweight linear classifier to boost the effectiveness of constructed ROIs, promoted quantitative interpretation, and achieved comparable predictive performance to DL methods. Throughout this, our framework produces an "AD-relatedness index"for each ROI. It offers an intuitive understanding of brain status for an individual patient and across patient groups concerning AD progression.
引用
收藏
页数:18
相关论文
共 71 条
  • [61] Sundararajan M, 2017, PR MACH LEARN RES, V70
  • [62] Vaswani A, 2017, ADV NEUR IN, V30
  • [63] Learning to synthesise the ageing brain without longitudinal data
    Xia, Tian
    Chartsias, Agisilaos
    Wang, Chengjia
    Tsaftaris, Sotirios A.
    [J]. MEDICAL IMAGE ANALYSIS, 2021, 73
  • [64] Diffusion Kernel Attention Network for Brain Disorder Classification
    Zhang, Jianjia
    Zhou, Luping
    Wang, Lei
    Liu, Mengting
    Shen, Dinggang
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (10) : 2814 - 2827
  • [65] Zhang X., 2021, IEEE J. Biomed. Heal. Inform.
  • [66] Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    Zhang, YY
    Brady, M
    Smith, S
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (01) : 45 - 57
  • [67] Regional Radiomics Similarity Networks Reveal Distinct Subtypes and Abnormality Patterns in Mild Cognitive Impairment
    Zhao, Kun
    Zheng, Qiang
    Dyrba, Martin
    Rittman, Timothy
    Li, Ang
    Che, Tongtong
    Chen, Pindong
    Sun, Yuqing
    Kang, Xiaopeng
    Li, Qiongling
    Liu, Bing
    Liu, Yong
    Li, Shuyu
    [J]. ADVANCED SCIENCE, 2022, 9 (12)
  • [68] Independent and reproducible hippocampal radiomic biomarkers for multisite Alzheimer?s disease: diagnosis, longitudinal progress and biological basis
    Zhao, Kun
    Ding, Yanhui
    Han, Ying
    Fan, Yong
    Alexander-Bloch, Aaron F.
    Han, Tong
    Jin, Dan
    Liu, Bing
    Lu, Jie
    Song, Chengyuan
    Wang, Pan
    Wang, Dawei
    Wang, Qing
    Xu, Kaibin
    Yang, Hongwei
    Yao, Hongxiang
    Zheng, Yuanjie
    Yu, Chunshui
    Zhou, Bo
    Zhang, Xinqing
    Zhou, Yuying
    Jiang, Tianzi
    Zhang, Xi
    Liu, Yong
    [J]. SCIENCE BULLETIN, 2020, 65 (13) : 1103 - 1113
  • [69] Learning Deep Features for Discriminative Localization
    Zhou, Bolei
    Khosla, Aditya
    Lapedriza, Agata
    Oliva, Aude
    Torralba, Antonio
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2921 - 2929
  • [70] Dual-Model Radiomic Biomarkers Predict Development of Mild Cognitive Impairment Progression to Alzheimer's Disease
    Zhou, Hucheng
    Jiang, Jiehui
    Lu, Jiaying
    Wang, Min
    Zhang, Huiwei
    Zuo, Chuantao
    Weiner, Michael W.
    Aisen, Paul
    Petersen, Ronald
    Jack, Clifford R., Jr.
    Jagust, William
    Trojanowki, John Q.
    Toga, Arthur W.
    Beckett, Laurel
    Green, Robert C.
    Saykin, Andrew J.
    Morris, John
    Shaw, Leslie M.
    Khachaturian, Zaven
    Sorensen, Greg
    Carrillo, Maria
    Kuller, Lew
    Raichle, Marc
    Paul, Steven
    Davies, Peter
    Fillit, Howard
    Hefti, Franz
    Holtzman, David
    Mesulam, M. Marcel
    Potter, William
    Snyder, Peter
    Lilly, Eli
    Montine, Tom
    Jimenez, Gustavo
    Donohue, Michael
    Gessert, Devon
    Harless, Kelly
    Salazar, Jennifer
    Cabrera, Yuliana
    Walter, Sarah
    Hergesheimer, Lindsey
    Harvey, Danielle
    Bernstein, Matthew
    Fox, Nick
    Thompson, Paul
    Schuff, Norbert
    DeCArli, Charles
    Borowski, Bret
    Gunter, Jeff
    Senjem, Matt
    [J]. FRONTIERS IN NEUROSCIENCE, 2019, 12