A quantitatively interpretable model for Alzheimer's disease prediction using deep counterfactuals

被引:0
作者
Oh, Kwanseok [1 ]
Heo, Da-Woon [1 ]
Mulyadi, Ahmad Wisnu [2 ]
Jung, Wonsik [2 ]
Kang, Eunsong
Lee, Kun Ho [3 ,4 ,5 ]
Suk, Heung-Il [1 ]
机构
[1] Korea Univ, Dept Artificial Intelligence, Seoul 02841, South Korea
[2] Korea Univ, Dept Brain & Cognit Engn, Seoul 02841, South Korea
[3] Chosun Univ, Gwangju Alzheimers & Related Dementia Cohort Res C, Gwangju 61452, South Korea
[4] Chosun Univ, Dept Biomed Sci, Gwangju 61452, South Korea
[5] Korea Brain Res Inst, Daegu 41062, South Korea
关键词
Alzheimer's disease; Counterfactual reasoning; Quantitative feature-based in-depth analysis; Counterfactual-guided attention; MILD COGNITIVE IMPAIRMENT; ATROPHY; MRI; PROGRESSION; NEUROPATHOLOGY; HIPPOCAMPUS; IMAGES; CORTEX; AD;
D O I
10.1016/j.neuroimage.2025.121077
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Deep learning (DL) for predicting Alzheimer's disease (AD) has provided timely intervention in disease progression yet still demands attentive interpretability to explain how their DL models make definitive decisions. Counterfactual reasoning has recently gained increasing attention in medical research because of its ability to provide a refined visual explanatory map. However, such visual explanatory maps based on visual inspection alone are insufficient unless we intuitively demonstrate their medical or neuroscientific validity via quantitative features. In this study, we synthesize the counterfactual-labeled structural MRIs using our proposed framework and transform it into a gray matter density map to measure its volumetric changes over the parcellated region of interest (ROI). We also devised a lightweight linear classifier to boost the effectiveness of constructed ROIs, promoted quantitative interpretation, and achieved comparable predictive performance to DL methods. Throughout this, our framework produces an "AD-relatedness index"for each ROI. It offers an intuitive understanding of brain status for an individual patient and across patient groups concerning AD progression.
引用
收藏
页数:18
相关论文
共 71 条
  • [1] From attribution maps to human-understandable explanations through Concept Relevance Propagation
    Achtibat, Reduan
    Dreyer, Maximilian
    Eisenbraun, Ilona
    Bosse, Sebastian
    Wiegand, Thomas
    Samek, Wojciech
    Lapuschkin, Sebastian
    [J]. NATURE MACHINE INTELLIGENCE, 2023, 5 (09) : 1006 - +
  • [2] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [3] Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence
    Ali, Sajid
    Abuhmed, Tamer
    El-Sappagh, Shaker
    Muhammad, Khan
    Alonso-Moral, Jose M.
    Confalonieri, Roberto
    Guidotti, Riccardo
    Del Ser, Javier
    Diaz-Rodriguez, Natalia
    Herrera, Francisco
    [J]. INFORMATION FUSION, 2023, 99
  • [4] Three-dimensional gray matter atrophy mapping in mild cognitive impairment and mild Alzheimer disease
    Apostolova, Liana G.
    Steiner, Calen A.
    Akopyan, Gohar G.
    Dutton, Rebecca A.
    Hayashi, Kiralee M.
    Toga, Arthur W.
    Cummings, Jeffrey L.
    Thompson, Paul M.
    [J]. ARCHIVES OF NEUROLOGY, 2007, 64 (10) : 1489 - 1495
  • [5] On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
    Bach, Sebastian
    Binder, Alexander
    Montavon, Gregoire
    Klauschen, Frederick
    Mueller, Klaus-Robert
    Samek, Wojciech
    [J]. PLOS ONE, 2015, 10 (07):
  • [6] POINTS OF SIGNIFICANCE Statistics versus machine learning
    Bzdok, Danilo
    Altman, Naomi
    Krzywinski, Martin
    [J]. NATURE METHODS, 2018, 15 (04) : 232 - 233
  • [7] Explaining a series of models by propagating Shapley values
    Chen, Hugh
    Lundberg, Scott M.
    Lee, Su-In
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [8] APOE Promoter Polymorphism-219T/G is an Effect Modifier of the Influence of APOE ε4 on Alzheimer's Disease Risk in a Multiracial Sample
    Choi, Kyu Yeong
    Lee, Jang Jae
    Gunasekaran, Tamil Iniyan
    Kang, Sarang
    Lee, Wooje
    Jeong, Jangho
    Lim, Ho Jae
    Zhang, Xiaoling
    Zhu, Congcong
    Won, So-Yoon
    Choi, Yu Yong
    Seo, Eun Hyun
    Lee, Seok Cheol
    Gim, Jungsoo
    Chung, Ji Yeon
    Chong, Ari
    Byun, Min Soo
    Seo, Sujin
    Ko, Pan-Woo
    Han, Ji-Won
    McLean, Catriona
    Farrell, John
    Lunetta, Kathryn L.
    Miyashita, Akinori
    Hara, Norikazu
    Won, Sungho
    Choi, Seong-Min
    Ha, Jung-Min
    Jeong, Jee Hyang
    Kuwano, Ryozo
    Song, Min Kyung
    An, Seong Soo A.
    Lee, Young Min
    Park, Kyung Won
    Lee, Ho-Won
    Choi, Seong Hye
    Rhee, Sangmyung
    Song, Woo Keun
    Lee, Jung Sup
    Mayeux, Richard
    Haines, Jonathan L.
    Pericak-Vance, Margaret A.
    Choo, Il Han
    Nho, Kwangsik
    Kim, Ki-Woong
    Lee, Dong Young
    Kim, SangYun
    Kim, Byeong C.
    Kim, Hoowon
    Jun, Gyungah R.
    [J]. JOURNAL OF CLINICAL MEDICINE, 2019, 8 (08)
  • [9] Longitudinal progression of Alzheimers-like patterns of atrophy in normal older adults: the SPARE-AD index
    Davatzikos, Christos
    Xu, Feng
    An, Yang
    Fan, Yong
    Resnick, Susan M.
    [J]. BRAIN, 2009, 132 : 2026 - 2035
  • [10] A QUANTITATIVE MORPHOMETRIC ANALYSIS OF THE NEURONAL AND SYNAPTIC CONTENT OF THE FRONTAL AND TEMPORAL CORTEX IN PATIENTS WITH ALZHEIMERS-DISEASE
    DAVIES, CA
    MANN, DMA
    SUMPTER, PQ
    YATES, PO
    [J]. JOURNAL OF THE NEUROLOGICAL SCIENCES, 1987, 78 (02) : 151 - 164