Response reconstruction based on measurement matrix optimization in compressed sensing for structural health monitoring

被引:2
作者
Zhang, Xiao Hua [1 ]
Xiao, Xing Yong [1 ]
Yang, Ze Peng [1 ]
Fang, Sheng En [1 ]
机构
[1] Fuzhou Univ, Coll Civil Engn, 2 Wulong River North Rd,Univ Town, Fuzhou 350108, Fujian, Peoples R China
关键词
Structural health monitoring; compressed sensing; response reconstruction; optimization; Gaussian measurement matrix; SIGNAL RECOVERY; DAMAGE;
D O I
10.1177/13694332241300670
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Structural health monitoring (SHM) data have a large volume, increasing the cost of data storage and transmission and the difficulties of structural parameter identification. The compressed sensing (CS) theory provides a signal acquisition and analysis strategy. Signal reconstruction using limited measurements and CS has attracted significant interest. However, the dynamic responses obtained from civil engineering structures contain noise, resulting in sparse samples and reducing the signal reconstruction accuracy. Therefore, we propose an optimization algorithm for the measurement matrix integrating the Karhunen-Loeve transform (KLT) and approximate QR decomposition (KLT-QR) to improve the accuracy of dynamic response reconstruction of SHM data. The KLT reduces the correlation between the measurement matrix and the sparse basis. The approximate QR decomposition is used to improve the independence between the column vectors of the measurement matrix, optimizing the measurement matrix. The experimental results for a laboratory steel beam indicate that the proposed KLT-QR algorithm outperforms three other algorithms regarding the accuracy of dynamic response reconstruction (acceleration, displacement, and strain), especially at high compression ratios. The acceleration responses from the Ji'an Bridge are utilized to verify the advantages of the proposed algorithm. The results demonstrate that the KLT-QR algorithm has the highest accuracy of reconstructing the vibration signals and yields better Fourier spectra than the conventional Gaussian measurement matrix.
引用
收藏
页码:1029 / 1040
页数:12
相关论文
共 40 条
[1]   Compressive-sensing data reconstruction for structural health monitoring: a machine-learning approach [J].
Bao, Yuequan ;
Tang, Zhiyi ;
Li, Hui .
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2020, 19 (01) :293-304
[2]   Compressed Sensing in Astronomy [J].
Bobin, Jerome ;
Starck, Jean-Luc ;
Ottensamer, Roland .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2008, 2 (05) :718-726
[3]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[4]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[5]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[6]   Measurement Matrix Optimization Based on Target Prior Information for Radar Imaging [J].
Chen, Yijun ;
Wang, Siyuan ;
Luo, Ying ;
Liu, Hongwei .
IEEE SENSORS JOURNAL, 2023, 23 (09) :9808-9819
[7]   A fast sparsity-free compressive sensing approach for vibration data reconstruction using deep convolutional GAN [J].
Dong, Guan-Sen ;
Wan, Hua-Ping ;
Luo, Yaozhi ;
Todd, Michael D. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 188
[8]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[9]  
Donoval D, 2006, TRANSISTOR LEVEL MODELING FOR ANALOG/ RF IC DESIGN, P1, DOI 10.1007/1-4020-4556-5_1
[10]   Measurement matrix optimization based on incoherent unit norm tight frame [J].
Entezari, Rahim ;
Rashidi, Alijabbar .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2017, 82 :321-326