Solving Cauchy Problem for Elasticity Equations in a Plane Dynamic Case

被引:0
作者
Senashov, Sergei I. [1 ]
Savostyanova, Irina L. [1 ]
Cherepanova, Olga N. [2 ]
机构
[1] Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk, Russia
[2] Siberian Fed Univ, Krasnoyarsk, Russia
来源
JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS | 2025年 / 18卷 / 01期
关键词
equations of elasticity in a plane dynamic case; Cauchy problem; conservation laws; exact solutions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
05.09.2024, 24.10.2024, accepted Abstract. Equations of elasticity in a plane dynamic case are considered in this paper. The system of equations is replaced by system of first-order differential equations with the same solution. The solution-equivalent system is group fibration of the original system of equations. It is a combination of the resolving and automorphic systems. Special classes of conservation laws are found for the resolving system of equations. These laws allow one to find the solution of the original equations in the form of surface integrals over the boundary of an elastic body.
引用
收藏
页码:71 / 80
页数:10
相关论文
共 12 条
[1]  
[Аннин Б.Д. Annin B.D.], 2020, [Сибирский журнал индустриальной математики, Sibirskii zhurnal industrial'noi matematiki], V23, P11, DOI 10.33048/SIBJIM.2020.23.102
[2]  
Annin B.D., 1983, Group properties of elasticity and plasticity equations
[3]  
Gomonova O.V., 2021, Applied Mechanics and Technical Physics, V62, P208
[4]  
Mirkin LI., 1961, Handbook to X-ray Diffraction Analysis of Polycrystals (in Russian)
[5]  
Ostrosablin N. I., 1995, Journal of Applied Mechanics and Technical Physics, V36, P724, DOI 10.1007/BF02369286
[6]  
Ostrosablin N.I, 1993, Applied Mechanics and Technical Physics, V34, P112
[7]  
Ovsyannikov L.V., 1978, GROUP ANAL DIFFERENT
[8]  
Prudnikov V.Yu., 2009, Solid State Mechanics, V22, P471
[9]  
[Сенашов С.И. Senashov S.I.], 2021, [Сибирский журнал индустриальной математики, Sibirskii zhurnal industrial'noi matematiki, Sibirskii zhurnal industrial'noi matematiki], V24, P120, DOI 10.33048/SIBJIM.2021.24.109
[10]   GROUP ANALYSIS OF THE EQUATIONS OF IDEAL PLASTICITY [J].
Senashov, T., I ;
Gomonova, O., V ;
Cherepanova, O. N. .
JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2021, 62 (05) :882-889