Spectral radius and k-factor-critical graphs

被引:0
|
作者
Zhou, Sizhong [1 ]
Sun, Zhiren [2 ]
Zhang, Yuli [3 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Sci, Zhenjiang 212100, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[3] Dalian Jiaotong Univ, Sch Sci, Dalian 116028, Liaoning, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2025年 / 81卷 / 03期
关键词
Graph; Spectral radius; Perfect matching; <italic>k</italic>-factor-critical graph; ISOLATED TOUGHNESS; MATCHINGS; EXISTENCE; CLOSURE;
D O I
10.1007/s11227-024-06902-3
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
For a nonnegative integer k, a graph G is said to be k-factor-critical if G - Q \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-Q$$\end{document} admits a perfect matching for any Q subset of V ( G ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\subseteq V(G)$$\end{document} with | Q | = k \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|Q|=k$$\end{document} . In this article, we prove spectral radius conditions for the existence of k-factor-critical graphs. Our result generalizes one previous result on perfect matchings of graphs. Furthermore, we claim that the bounds on spectral radius in Theorem 3.1 are sharp.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Perfect integer k-matching, k-factor-critical, and the spectral radius of graphs
    Zhang, Quanbao
    Fan, Dandan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 701 : 97 - 111
  • [2] Spectral radius and k-factor-critical graphsSpectral radius and k-factor-critical graphsS. Zhou et al.
    Sizhong Zhou
    Zhiren Sun
    Yuli Zhang
    The Journal of Supercomputing, 81 (3)
  • [3] A conjecture on k-factor-critical and 3-γ-critical graphs
    WANG Tao1&YU QingLin2 1Institute of Applied Mathematics
    2Department of Mathematics and Statistics
    Science China(Mathematics), 2010, 53 (05) : 348 - 354
  • [4] A conjecture on k-factor-critical and 3-γ-critical graphs
    Tao Wang
    QingLin Yu
    Science China Mathematics, 2010, 53 : 1385 - 1391
  • [5] A conjecture on k-factor-critical and 3-γ-critical graphs
    Wang Tao
    Yu QingLin
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (05) : 1385 - 1391
  • [6] Minimally k-Factor-Critical Graphs for Some Large k
    Jing Guo
    Heping Zhang
    Graphs and Combinatorics, 2023, 39
  • [7] Minimally k-Factor-Critical Graphs for Some Large k
    Guo, Jing
    Zhang, Heping
    GRAPHS AND COMBINATORICS, 2023, 39 (03)
  • [8] Sufficient conditions for k-factor-critical graphs and spanning k-trees of graphs
    Ao, Guoyan
    Liu, Ruifang
    Yuan, Jinjiang
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2025, 61 (02)
  • [9] Integer k-matchings of graphs: k-Berge-Tutte formula, k-factor-critical graphs and k-barriers
    Liu, Yan
    Su, Xueli
    Xiong, Danni
    DISCRETE APPLIED MATHEMATICS, 2021, 297 : 120 - 128
  • [10] Binding number, k-factor and spectral radius of graphs
    Fana, Dandan
    Lin, Huiqiu
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):