A new class of Carleson measures and integral operators on Bergman spaces

被引:0
|
作者
Arroussi, Hicham [1 ,2 ]
Liu, Huijie [3 ]
Tong, Cezhong [3 ]
Yang, Zicong [3 ]
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68, Helsinki, Finland
[2] Univ Reading, Dept Math & Stat, Reading, England
[3] Hebei Univ Technol, Dept Math, Tianjin 300401, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2024年 / 197卷
基金
中国国家自然科学基金;
关键词
Bergman space; Sobolev Carleson measure; Volterra type operator; Composition-differentiation operator; WEIGHTED COMPOSITION OPERATORS; LINEAR-DIFFERENTIAL EQUATIONS; BLOCH; MULTIPLIERS; ISOMETRIES;
D O I
10.1016/j.bulsci.2024.103531
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n be a positive integer and u=(u0,u1,& mldr;,un) with uk is an element of H(D) for 0 <= k <= n, where H(D) is the space of analytic functions in the unit disk D. For 0<p,q0 such that integral(D)|u(0)(z)f(z)+u1(z)f '(z)+& ctdot;+un(z)f(n)(z)|(q)d mu(z) <= C & Vert;f & Vert;(q)(p) for all f is an element of Ap. Using Sobolev Carleson measures, we characterized the boundedness and compactness of the generalized Volterra-type operator Ig(n) acting on Bergman space to another, which is represented as I(g)((n))f=I-n(f(g0)+f '(g1)+& ctdot;+f((n-1))g(n-1)), here g=(g0,& ctdot;,g(n-1)) with g(k)is an element of H(D) for 0 <= k <= n-1 and (If)(z)=integral(z)(0)f(w)dw is the usual integration operator. This operator is a generalization of the operator introduced by Chalmoukis in [5]. As a consequence, we obtain conditions for certain linear differential equations to have solutions in Bergman spaces. Moreover, we study the boundedness, compactness and Hilbert-Schmidtness of the following sums of generalized weighted composition operators: Lu,phi(n)=& sum;(n)(k=0) W-uk,phi((k)), Where phi is an analytic self-map of D and W-uk,phi(f)=u(k)& sdot;f((k))degrees phi. (c) 2024 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] Trace class criteria for Toeplitz and composition operators on small Bergman spaces
    Angel Pelaez, Jose
    Rattya, Jouni
    ADVANCES IN MATHEMATICS, 2016, 293 : 606 - 643
  • [42] Carleson Measures for Spaces of Dirichlet Type
    Daniel Girela
    José Ángel Peláez
    Integral Equations and Operator Theory, 2006, 55 : 415 - 427
  • [43] Area Operators on Bergman Spaces
    Lv, Xiao Fen
    Pau, Jordi
    Wang, Mao Fa
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (05) : 1161 - 1176
  • [44] Area Operators on Bergman Spaces
    Xiao Fen Lv
    Jordi Pau
    Mao Fa Wang
    Acta Mathematica Sinica, English Series, 2024, 40 : 1161 - 1176
  • [45] ON CARLESON-TYPE EMBEDDINGS FOR BERGMAN SPACES OF HARMONIC FUNCTIONS
    Jovanovic, T.
    ANALYSIS MATHEMATICA, 2018, 44 (04) : 493 - 499
  • [46] On Carleson-Type Embeddings for Bergman Spaces of Harmonic Functions
    T. Jovanović
    Analysis Mathematica, 2018, 44 : 493 - 499
  • [47] Carleson measure and Volterra type operators on weighted BMOA spaces
    Qian, Ruishen
    Li, Songxiao
    GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (03) : 413 - 424
  • [48] Schatten Class Composition Operators on Weighted Bergman Spaces of Bounded Symmetric Domains
    Li, Song-Ying
    Russo, Bernard
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1997, 172 (01) : 379 - 394
  • [49] Schatten class composition operators on weighted Bergman spaces of bounded symmetric domains
    Song-Ying Li
    Bernard Russo
    Annali di Matematica Pura ed Applicata, 1997, 172 : 379 - 394
  • [50] CARLESON MEASURES, RIEMANN-STIELTJES OPERATORS AND MULTIPLIERS ON F(p, q, s) SPACES IN THE UNIT BALL OF Cn
    Peng, Ru
    Wu, You
    Deng, Fangwen
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (03) : 635 - 654