Time-resolved, physics-informed neural networks for tokamak total emission reconstruction and modelling

被引:1
作者
Rossi, R. [1 ]
Murari, A. [2 ,3 ]
Craciunescu, T. [4 ]
Wyss, I. [1 ]
Mazon, D. [5 ]
Pau, A. [6 ]
Costantini, A. [1 ]
Gelfusa, M. [1 ]
机构
[1] Univ Roma Tor Vergata, Dept Ind Engn, Via Politecn 1, I-00133 Rome, Italy
[2] Univ Padua, Consorzio RFX, CNR, ENEA,INFN,Acciaierie Venete SpA, Cso Stati Uniti 4, I-35127 Padua, Italy
[3] CNR, Ist Sci & Tecnol Plasmi, Padua, Italy
[4] Natl Inst Laser, Plasma & Radiat Phys, Magurele, Romania
[5] CEA French Alternat Energies & Atom Energy Commis, F-13108 St Paul Les Durance, France
[6] Ecole Polytech Fed Lausanne EPFL, Swiss Plasma Ctr SPC, CH-1015 Lausanne, Switzerland
关键词
physics-informed neural networks; radiation emission; tomography; MARFE; ELM; core radiation; radiative anomalies; BAYESIAN-INFERENCE; BOLOMETER SYSTEM; TOMOGRAPHY; JET;
D O I
10.1088/1741-4326/adb3bc
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Diagnostics play a pivotal role in nuclear fusion experimental reactors, supporting physical studies, modelling, and plasma control. However, most diagnostics provide limited and partial information about the plasma's status. For instance, magnetic probes measure only external magnetic fields, while interferometers, polarimeters, and bolometers deliver line-integrated measurements, necessitating specific inversion algorithms to extract local information. In the case of bolometers, tomographic inversions are particularly complex due to the variety of radiative patterns observed, with regularization equations often only weakly approximating the intricate physics involved. To address these challenges, it is essential to develop innovative algorithms that enhance the accuracy of the inversion processes, thereby ensuring reliable results for physics understanding, modelling, and plasma control. This work introduces new methodologies based on Physics-Informed Neural Networks (PINNs) to perform time-resolved emission tomography from bolometer data. These methodologies are first evaluated using synthetic cases (phantoms) and compared with one of the most advanced tomographic inversion techniques in the literature. Subsequently, they are applied to reconstruct specific radiative anomalies, such as Edge Localized Modes, Multifaceted Asymmetric Radiation from the Edge, and excessive core radiation leading to temperature hollowness at the Joint European Torus. The study demonstrates that PINNs not only enhance the overall accuracy of tomographic inversions but also offer advanced capabilities like super-resolution, data projection, and self-modelling. These features make time-resolved PINNs a valuable tool for analysing radiative patterns in transient phenomena. Although this work only considers tomography, the technology is perfectly suited to tackle any kind of inverse problem and can therefore provide significant benefits for both research and practical applications in nuclear fusion.
引用
收藏
页数:28
相关论文
共 98 条
[1]   X-ray tomography on the TCV tokamak [J].
Anton, M ;
Weisen, H ;
Dutch, MJ ;
vonderLinden, W ;
Buhlmann, F ;
Chavan, R ;
Marletaz, B ;
Marmillod, P ;
Paris, P .
PLASMA PHYSICS AND CONTROLLED FUSION, 1996, 38 (11) :1849-1878
[2]   Disruption prediction at JET through deep convolutional neural networks using spatiotemporal information from plasma profiles [J].
Aymerich, E. ;
Sias, G. ;
Pisano, F. ;
Cannas, B. ;
Carcangiu, S. ;
Sozzi, C. ;
Stuart, C. ;
Carvalho, P. J. ;
Fanni, A. .
NUCLEAR FUSION, 2022, 62 (06)
[3]   The X-Point radiating regime at ASDEX Upgrade and TCV [J].
Bernert, M. ;
Wiesen, S. ;
Fevrier, O. ;
Kallenbach, A. ;
Koenders, J. T. W. ;
Sieglin, B. ;
Stroth, U. ;
Bosman, T. O. S. J. ;
Brida, D. ;
Cavedon, M. ;
David, P. ;
Dunne, M. G. ;
Henderson, S. ;
Kool, B. ;
Lunt, T. ;
McDermott, R. M. ;
Pan, O. ;
Perek, A. ;
Reimerdes, H. ;
Sheikh, U. ;
Theiler, C. ;
van Berkel, M. ;
Wijkamp, T. ;
Wischmeier, M. .
NUCLEAR MATERIALS AND ENERGY, 2023, 34
[4]   X-point radiation, its control and an ELM suppressed radiating regime at the ASDEX Upgrade tokamak [J].
Bernert, M. ;
Janky, F. ;
Sieglin, B. ;
Kallenbach, A. ;
Lipschultz, B. ;
Reimold, F. ;
Wischmeier, M. ;
Cavedon, M. ;
David, P. ;
Dunne, M. G. ;
Griener, M. ;
Kudlacek, O. ;
McDermott, R. M. ;
Treutterer, W. ;
Wolfrum, E. ;
Brida, D. ;
Fevrier, O. ;
Henderson, S. ;
Komm, M. .
NUCLEAR FUSION, 2021, 61 (02)
[5]   Diagnostics for plasma control - From ITER to DEMO [J].
Biel, W. ;
Albanese, R. ;
Ambrosino, R. ;
Ariola, M. ;
Berkel, M., V ;
Bolshakova, I ;
Brunner, K. J. ;
Cavazzana, R. ;
Cecconello, M. ;
Conroy, S. ;
Dinklage, A. ;
Duran, I ;
Dux, R. ;
Eade, T. ;
Entler, S. ;
Ericsson, G. ;
Fable, E. ;
Farina, D. ;
Figini, L. ;
Finotti, C. ;
Franke, Th ;
Giacomelli, L. ;
Giannone, L. ;
Gonzalez, W. ;
Hjalmarsson, A. ;
Hron, M. ;
Janky, F. ;
Kallenbach, A. ;
Kogoj, J. ;
Koenig, R. ;
Kudlacek, O. ;
Luis, R. ;
Malaquias, A. ;
Marchuk, O. ;
Marchiori, G. ;
Mattei, M. ;
Maviglia, F. ;
De Masi, G. ;
Mazon, D. ;
Meister, H. ;
Meyer, K. ;
Micheletti, D. ;
Nowak, S. ;
Piron, Ch ;
Pironti, A. ;
Rispoli, N. ;
Rohde, V ;
Sergienko, G. ;
El Shawish, S. ;
Siccinio, M. .
FUSION ENGINEERING AND DESIGN, 2019, 146 :465-472
[6]   DEMO diagnostics and burn control [J].
Biel, Wolfgang ;
de Baar, Marco ;
Dinklage, Andreas ;
Felici, Federico ;
Koenig, Ralf ;
Meister, Hans ;
Treutterer, Wolfgang ;
Wenninger, Ronald .
FUSION ENGINEERING AND DESIGN, 2015, 96-97 :8-15
[7]   Physics-Informed Neural Networks Enhanced Particle Tracking Velocimetry: An Example for Turbulent Jet Flow [J].
Cai, Shengze ;
Gray, Callum ;
Karniadakis, George Em .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 :1-9
[8]   Physics-informed neural networks (PINNs) for fluid mechanics: a review [J].
Cai, Shengze ;
Mao, Zhiping ;
Wang, Zhicheng ;
Yin, Minglang ;
Karniadakis, George Em .
ACTA MECHANICA SINICA, 2021, 37 (12) :1727-1738
[9]  
Chen Z, 2021, NAT COMMUN, V12, DOI [10.1038/s41467-021-26434-1, 10.1038/s41467-021-27250-3]
[10]  
Corder G. W., 2014, Nonparametric statistics: A step-by-step approach