Brill-Noether loci

被引:0
作者
Teixidor i Bigas, Montserrat [1 ]
机构
[1] Tufts Univ, Math Dept, 177 Coll Ave, Medford, MA 02155 USA
关键词
LIMIT LINEAR SERIES; KODAIRA DIMENSION; MODULI SPACE; DIVISORS; BUNDLES; CURVES;
D O I
10.1007/s00229-025-01616-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Brill-Noether loci Mg,dr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}<^>r_{g,d}$$\end{document} are those subsets of the moduli space Mg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_g$$\end{document} determined by the existence of a linear series of degree d and dimension r. By looking at non-singular curves in a neighborhood of a special chain of elliptic curves, we provide a new proof of the non-emptiness of the Brill-Noether loci when the expected codimension satisfies -g+r+1 <=rho(g,r,d)<= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-g+r+1\le \rho (g,r,d)\le 0$$\end{document} and prove that for a generic point of a component of this locus, the Petri map is onto. As an application, we show that Brill-Noether loci of the same codimension are distinct when the codimension is not too large, substantially generalizing the known result in codimensions 1 and 2. We also provide a new technique for checking that Brill-Noether loci are not included in each other.
引用
收藏
页数:17
相关论文
共 50 条
[31]   Generation and ampleness of coherent sheaves on abelian varieties, with application to Brill-Noether theory [J].
Pareschi, Giuseppe .
PURE AND APPLIED MATHEMATICS QUARTERLY, 2024, 20 (05) :2379-2413
[32]   GENERA OF BRILL-NOETHER CURVES AND STAIRCASE PATHS IN YOUNG TABLEAUX [J].
Chan, Melody ;
Martin, Alberto Lopez ;
Pflueger, Nathan ;
Teixidor i Bigas, Montserrat .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (05) :3405-3439
[33]   Ulrich sheaves and higher-rank Brill-Noether theory [J].
Kulkarni, Rajesh S. ;
Mustopa, Yusuf ;
Shipman, Ian .
JOURNAL OF ALGEBRA, 2017, 474 :166-179
[34]   A simple characteristic-free proof of the Brill-Noether theorem [J].
Brian Osserman .
Bulletin of the Brazilian Mathematical Society, New Series, 2014, 45 :807-818
[35]   HIGHER RANK BRILL-NOETHER THEORY ON SECTIONS OF K3 SURFACES [J].
Farkas, Gavril ;
Ortega, Angela .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (07)
[36]   SPECIAL DETERMINANTS IN HIGHER-RANK BRILL-NOETHER THEORY [J].
Osserman, Brian .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (11)
[37]   The Strong Maximal Rank conjecture and higher rank Brill-Noether theory [J].
Cotterill, Ethan ;
Alonso Gonzalo, Adrian ;
Zhang, Naizhen .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 104 (01) :169-205
[38]   Brill-Noether theory of curves on Enriques surfaces II: the Clifford index [J].
Knutsen, Andreas Leopold ;
Lopez, Angelo Felice .
MANUSCRIPTA MATHEMATICA, 2015, 147 (1-2) :193-237
[39]   Extremal effective divisors of Brill-Noether and Gieseker-Petri type in (M)over-bar1,n [J].
Chen, Dawei ;
Patel, Anand .
ADVANCES IN GEOMETRY, 2016, 16 (02) :231-242
[40]   Brill-Noether theory of curves on Enriques surfaces I: the positive cone and gonality [J].
Knutsen, Andreas Leopold ;
Lopez, Angelo Felice .
MATHEMATISCHE ZEITSCHRIFT, 2009, 261 (03) :659-690