Brill-Noether loci

被引:0
|
作者
Teixidor i Bigas, Montserrat [1 ]
机构
[1] Tufts Univ, Math Dept, 177 Coll Ave, Medford, MA 02155 USA
关键词
LIMIT LINEAR SERIES; KODAIRA DIMENSION; MODULI SPACE; DIVISORS; BUNDLES; CURVES;
D O I
10.1007/s00229-025-01616-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Brill-Noether loci Mg,dr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}<^>r_{g,d}$$\end{document} are those subsets of the moduli space Mg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_g$$\end{document} determined by the existence of a linear series of degree d and dimension r. By looking at non-singular curves in a neighborhood of a special chain of elliptic curves, we provide a new proof of the non-emptiness of the Brill-Noether loci when the expected codimension satisfies -g+r+1 <=rho(g,r,d)<= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-g+r+1\le \rho (g,r,d)\le 0$$\end{document} and prove that for a generic point of a component of this locus, the Petri map is onto. As an application, we show that Brill-Noether loci of the same codimension are distinct when the codimension is not too large, substantially generalizing the known result in codimensions 1 and 2. We also provide a new technique for checking that Brill-Noether loci are not included in each other.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Brill-Noether loci with ramification at two points
    Teixidor-I-Bigas, Montserrat
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (03) : 1217 - 1232
  • [2] Invariants of the Brill-Noether curve
    Castorena, Abel
    Martin, Alberto Lopez
    Bigas, Montserrat Teixidor I.
    ADVANCES IN GEOMETRY, 2017, 17 (01) : 39 - 52
  • [3] Brill-Noether loci in codimension two
    Tarasca, Nicola
    COMPOSITIO MATHEMATICA, 2013, 149 (09) : 1535 - 1568
  • [4] Connectedness of Brill-Noether Loci via Degenerations
    Osserman, Brian
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (19) : 6162 - 6178
  • [5] Nonemptiness and smoothness of twisted Brill-Noether loci
    Hitching, George H.
    Hoff, Michael
    Newstead, Peter E.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (02) : 685 - 709
  • [6] The osculating cone to special Brill-Noether loci
    Hoff, Michael
    Mayer, Ulrike
    COLLECTANEA MATHEMATICA, 2015, 66 (03) : 387 - 403
  • [7] NONEMPTINESS OF BRILL-NOETHER LOCI IN M (2, K)
    Lange, Herbert
    Newstead, Peter E.
    Park, Seong Suk
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (02) : 746 - 767
  • [8] New examples of twisted Brill-Noether loci I
    Brambila-Paz, L.
    Newstead, P. E.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (09)
  • [9] Linear series on a stable curve of compact type and relations among Brill-Noether loci
    Kim, Seonja
    JOURNAL OF ALGEBRA, 2020, 547 : 70 - 94
  • [10] Motivic classes of degeneracy loci and pointed Brill-Noether varieties
    Anderson, Dave
    Chen, Linda
    Tarasca, Nicola
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (03): : 1787 - 1822