Machine learning methods for histopathological image analysis: Updates in 2024

被引:0
作者
Komura, Daisuke [1 ]
Ochi, Mieko [1 ]
Ishikawa, Shumpei [1 ]
机构
[1] Univ Tokyo, Grad Sch Med, Dept Prevent Med, Tokyo, Japan
来源
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL | 2025年 / 27卷
关键词
Histopathology; Deep learning; Machine learning; Whole slide image; Computer-assisted diagnosis; Digital image analysis; Foundation model; COLOR NORMALIZATION; SURVIVAL PREDICTION; DEEP; CANCER; CLASSIFICATION;
D O I
10.1016/j.csbj.2024.12.033
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The combination of artificial intelligence and digital pathology has emerged as a transformative force in healthcare and biomedical research. As an update to our 2018 review, this review presents comprehensive analysis of machine learning applications in histopathological image analysis, with focus on the developments since 2018. We highlight significant advances that have expanded the technical capabilities and practical applications of computational pathology. The review examines progress in addressing key challenges in the field as follows: processing of gigapixel whole slide images, insufficient labeled data, multidimensional analysis, domain shifts across institutions, and interpretability of machine learning models. We evaluate emerging trends, such as foundation models and multimodal integration, that are reshaping the field. Overall, our review highlights the potential of machine learning in enhancing both routine pathological analysis and scientific discovery in pathology. By providing this comprehensive overview, this review aims to guide researchers and clinicians in understanding the current state of the pathology image analysis field and its future trajectory.
引用
收藏
页码:383 / 400
页数:18
相关论文
共 235 条
[1]  
10xgenomics, Spatial Gene Expression. 10x Genomics
[2]   Multi-cell type and multi-level graph aggregation network for cancer grading in pathology images [J].
Abbas, Syed Farhan ;
Vuong, Trinh Thi Le ;
Kim, Kyungeun ;
Song, Boram ;
Kwak, Jin Tae .
MEDICAL IMAGE ANALYSIS, 2023, 90
[3]   Accurate structure prediction of biomolecular interactions with AlphaFold 3 [J].
Abramson, Josh ;
Adler, Jonas ;
Dunger, Jack ;
Evans, Richard ;
Green, Tim ;
Pritzel, Alexander ;
Ronneberger, Olaf ;
Willmore, Lindsay ;
Ballard, Andrew J. ;
Bambrick, Joshua ;
Bodenstein, Sebastian W. ;
Evans, David A. ;
Hung, Chia-Chun ;
O'Neill, Michael ;
Reiman, David ;
Tunyasuvunakool, Kathryn ;
Wu, Zachary ;
Zemgulyte, Akvile ;
Arvaniti, Eirini ;
Beattie, Charles ;
Bertolli, Ottavia ;
Bridgland, Alex ;
Cherepanov, Alexey ;
Congreve, Miles ;
Cowen-Rivers, Alexander I. ;
Cowie, Andrew ;
Figurnov, Michael ;
Fuchs, Fabian B. ;
Gladman, Hannah ;
Jain, Rishub ;
Khan, Yousuf A. ;
Low, Caroline M. R. ;
Perlin, Kuba ;
Potapenko, Anna ;
Savy, Pascal ;
Singh, Sukhdeep ;
Stecula, Adrian ;
Thillaisundaram, Ashok ;
Tong, Catherine ;
Yakneen, Sergei ;
Zhong, Ellen D. ;
Zielinski, Michal ;
Zidek, Augustin ;
Bapst, Victor ;
Kohli, Pushmeet ;
Jaderberg, Max ;
Hassabis, Demis ;
Jumper, John M. .
NATURE, 2024, 630 (8016) :493-500
[4]   Predicting lymph node recurrence in cT1-2N0 tongue squamous cell carcinoma: collaboration between artificial intelligence and pathologists [J].
Adachi, Masahiro ;
Taki, Tetsuro ;
Kojima, Motohiro ;
Sakamoto, Naoya ;
Matsuura, Kazuto ;
Hayashi, Ryuichi ;
Tabuchi, Keiji ;
Ishikawa, Shumpei ;
Ishii, Genichiro ;
Sakashita, Shingo .
JOURNAL OF PATHOLOGY CLINICAL RESEARCH, 2024, 10 (05)
[5]   Generative Adversarial Networks in Digital Histopathology: Current Applications, Limitations, Ethical Considerations, and Future Directions [J].
Alajaji, Shahd A. ;
Khoury, Zaid H. ;
Elgharib, Mohamed ;
Saeed, Mamoon ;
Ahmed, Ahmed R. H. ;
Khan, Mohammad B. ;
Tavares, Tiffany ;
Jessri, Maryam ;
Puche, Adam C. ;
Hoorfar, Hamid ;
Stojanov, Ivan ;
Sciubba, James J. ;
Sultan, Ahmed S. .
MODERN PATHOLOGY, 2024, 37 (01)
[6]  
Amgad M, 2021, arXiv
[7]   A population-level digital histologic biomarker for enhanced prognosis of invasive breast cancer [J].
Amgad, Mohamed ;
Hodge, James M. ;
Elsebaie, Maha A. T. ;
Bodelon, Clara ;
Puvanesarajah, Samantha ;
Gutman, David A. ;
Siziopikou, Kalliopi P. ;
Goldstein, Jeffery A. ;
Gaudet, Mia M. ;
Teras, Lauren R. ;
Cooper, Lee A. D. .
NATURE MEDICINE, 2023, 30 (1) :85-97
[8]   Structured crowdsourcing enables convolutional segmentation of histology images [J].
Amgad, Mohamed ;
Elfandy, Habiba ;
Hussein, Hagar ;
Atteya, Lamees A. ;
Elsebaie, Mai A. T. ;
Elnasr, Lamia S. Abo ;
Sakr, Rokia A. ;
Salem, Hazem S. E. ;
Ismail, Ahmed F. ;
Saad, Anas M. ;
Ahmed, Joumana ;
Elsebaie, Maha A. T. ;
Rahman, Mustafijur ;
Ruhban, Inas A. ;
Elgazar, Nada M. ;
Alagha, Yahya ;
Osman, Mohamed H. ;
Alhusseiny, Ahmed M. ;
Khalaf, Mariam M. ;
Younes, Abo-Alela F. ;
Abdulkarim, Ali ;
Younes, Duaa M. ;
Gadallah, Ahmed M. ;
Elkashash, Ahmad M. ;
Fala, Salma Y. ;
Zaki, Basma M. ;
Beezley, Jonathan ;
Chittajallu, Deepak R. ;
Manthey, David ;
Gutman, David A. ;
Cooper, Lee A. D. .
BIOINFORMATICS, 2019, 35 (18) :3461-3467
[9]  
Anand D, 2019, INT CONF SYST SIGNAL, P219, DOI [10.13140/rg.2.2.34770.61125, 10.1109/IWSSIP.2019.8787328]
[10]  
[Anonymous], MERFISH Spatial Transcriptomics