Tunable N-doped carbon dots/SnO2 interface as a stable artificial solid electrolyte interphase for high-performance aqueous zinc-ion batteries

被引:3
作者
Gopalakrishnan, Mohan [1 ]
Hlaing, Myo Thandar [1 ]
Kulandaivel, Thirumoorthy [1 ]
Kao-ian, Wathanyu [1 ]
Etesami, Mohammad [1 ]
Liu, Wei-Ren [2 ,3 ]
Nguyen, Mai Thanh [4 ]
Yonezawa, Tetsu [4 ]
Limphirat, Wanwisa [5 ]
Kheawhom, Soorathep [1 ,6 ,7 ]
机构
[1] Chulalongkorn Univ, Fac Engn, Dept Chem Engn, Bangkok 10330, Thailand
[2] Chung Yuan Christian Univ, Dept Chem Engn, Chungli, Taiwan
[3] Chung Yuan Christian Univ, R&D Ctr Membrane Technol, Taoyuan 32023, Taiwan
[4] Hokkaido Univ, Fac Engn, Div Mat Sci & Engn, Sapporo, Hokkaido 0608628, Japan
[5] Synchrotron Light Res Inst Publ Org, 111 Univ Ave, Nakhon Ratchasima 30000, Thailand
[6] Chulalongkorn Univ, Fac Engn, Biocircular Green Econ Technol & Engn Ctr BCGeTEC, Bangkok 10330, Thailand
[7] Chulalongkorn Univ, Ctr Excellence Adv Mat Energy Storage, Bangkok 10330, Thailand
关键词
Dendrite suppression; Interfacial engineering; Zn plating/stripping; Electrodeposition kinetics; Rechargeable batteries; KINETICS; ANODE;
D O I
10.1016/j.jallcom.2025.178521
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Poor stability of zinc (Zn) anode hinders the use of aqueous zinc-ion batteries (AZIBs) for large-scale energy storage. Here, we report an effective artificial solid electrolyte interphase (ASEI) using N-doped carbon dots (CDs) and SnO2 to stabilize Zn anodes. By optimizing the CDs/SnO2 ratio, we can synthesize porous composites to construct "bayberry" and flower-like morphologies. The N-doped CDs/SnO2 anode creates surface dipoles and changes in charge distribution, allowing Zn ions to move to nitrogen functionalized sites with reduced adsorption barriers. Furthermore, hydroxyl oxygen boosts the surface's hydrophilicity, resulting in stronger adhesion to the Zn anode and better ion accessibility. This generates dense nucleation sites for uniform Zn deposition. The CDs/ SnO2@Zn electrode achieves a low nucleation potential of 47 mV and maintains 99.6 % coulombic efficiency (CE) over 1000 cycles at 2 mA cm-2 . In the symmetrical cells, the modified Zn anode exhibits stable cycling for 1200 h at 1 mAh cm-2 . A full cell with CDs/SnO2@Zn anode and MnO2 cathode retains 96.6 % capacity after 800 h. This study introduces a promising strategy for stabilizing Zn anodes and offers valuable insights for designing dendrite-free electrodes in next-generation AZIBs.
引用
收藏
页数:11
相关论文
共 55 条
[1]   Biomimetic Superstructured Interphase for Aqueous Zinc-Ion Batteries [J].
Ai, Yan ;
Yang, Chaochao ;
Yin, Ziqing ;
Wang, Tong ;
Gai, Tianyu ;
Feng, Jiayou ;
Li, Kailin ;
Zhang, Wei ;
Li, Yefei ;
Wang, Fei ;
Chao, Dongliang ;
Wang, Yonggang ;
Zhao, Dongyuan ;
Li, Wei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (22) :15496-15505
[2]   Adaptive COF-PVDF composite artificial solid electrolyte interphase for stable aqueous zinc batteries [J].
Aupama, Vipada ;
Sangsawang, Jinnawat ;
Kao-ian, Wathanyu ;
Wannapaiboon, Suttipong ;
Pimoei, Jirapha ;
Yoopensuk, Warunyoo ;
Opchoei, Montree ;
Tehrani, Zari ;
Margadonna, Serena ;
Kheawhom, Soorathep .
ELECTROCHIMICA ACTA, 2024, 506
[3]   Stabilizing a zinc anode via a tunable covalent organic framework-based solid electrolyte interphase [J].
Aupama, Vipada ;
Kao-ian, Wathanyu ;
Sangsawang, Jinnawat ;
Mohan, Gopalakrishnan ;
Wannapaiboon, Suttipong ;
Mohamad, Ahmad Azmin ;
Pattananuwat, Prasit ;
Sriprachuabwong, Chakrit ;
Liu, Wei-Ren ;
Kheawhom, Soorathep .
NANOSCALE, 2023, 15 (20) :9003-9013
[4]   Highly stable Ni-rich layered oxide cathode enabled by a thick protective layer with bio-tissue structure [J].
Bi, Yujing ;
Liu, Meng ;
Xiao, Biwei ;
Jiang, Yang ;
Lin, Huan ;
Zhang, Zhenggang ;
Chen, Guoxin ;
Sun, Qian ;
He, Haiyong ;
Huang, Feng ;
Sun, Xueliang ;
Wang, Deyu ;
Zhang, Ji-Guang .
ENERGY STORAGE MATERIALS, 2020, 24 :291-296
[5]   Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries [J].
Cao, Jin ;
Zhang, Dongdong ;
Zhang, Xinyu ;
Zeng, Zhiyuan ;
Qin, Jiaqian ;
Huang, Yunhui .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (02) :499-528
[6]   Roadmap for advanced aqueous batteries: From design of materials to applications [J].
Chao, Dongliang ;
Zhou, Wanhai ;
Xie, Fangxi ;
Ye, Chao ;
Li, Huan ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
SCIENCE ADVANCES, 2020, 6 (21)
[7]   Interfacial ionic effects in aqueous zinc metal batteries [J].
Chen, Chun ;
Long, Zuxin ;
Du, Xiaoyang ;
Li, Liansheng ;
Liang, Qinghua ;
Chao, Dongliang ;
Li, Dan .
ENERGY STORAGE MATERIALS, 2024, 71
[8]   Structural design of carbon dots/porous materials composites and their applications [J].
Chen, Jiancang ;
Xiao, Guangchun ;
Duan, Gaigai ;
Wu, Yongzhong ;
Zhao, Xiujian ;
Gong, Xiao .
CHEMICAL ENGINEERING JOURNAL, 2021, 421
[9]   An Interface-Bridged Organic-Inorganic Layer that Suppresses Dendrite Formation and Side Reactions for Ultra-Long-Life Aqueous Zinc Metal Anodes [J].
Cui, Yanhui ;
Zhao, Qinghe ;
Wu, Xiaojun ;
Chen, Xin ;
Yang, Jinlong ;
Wang, Yuetao ;
Qin, Runzhi ;
Ding, Shouxiang ;
Song, Yongli ;
Wu, Junwei ;
Yang, Kai ;
Wang, Zijian ;
Mei, Zongwei ;
Song, Zhibo ;
Wu, Hong ;
Jiang, Zhongyi ;
Qian, Guoyu ;
Yang, Luyi ;
Pan, Feng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (38) :16594-16601
[10]   "Soggy-Sand" Chemistry for High-Voltage Aqueous Zinc-Ion Batteries [J].
Deng, Rongyu ;
Chen, Jieshuangyang ;
Chu, Fulu ;
Qian, Mingzhi ;
He, Zhenjiang ;
Robertson, Alex W. ;
Maier, Joachim ;
Wu, Feixiang .
ADVANCED MATERIALS, 2024, 36 (11)