Multiscale Sparse Cross-Attention Network for Remote Sensing Scene Classification

被引:1
|
作者
Ma, Jingjing [1 ]
Jiang, Wei [1 ]
Tang, Xu [1 ]
Zhang, Xiangrong [1 ]
Liu, Fang [2 ]
Jiao, Licheng [1 ]
机构
[1] Xidian Univ, Sch Artificial Intelligence, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian 710071, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Key Lab Intelligent Percept & Syst High Dimens Inf, Minist Educ, Nanjing 210000, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature enhancement; remote sensing scene classification (RSSC); sparse cross-attention; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
10.1109/TGRS.2025.3525582
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Remote sensing (RS) scene classification (RSSC) is a prominent research topic in the RS community. Multilevel feature fusion is an important way of addressing RSSC, and many methods have been proposed in recent years. Although they succeed, current methods can still be improved, particularly in distinguishing the contributions of different multilevel features and fully and effectively fusing them. To address the above issues and fully exploit the potential of multilevel features for RSSC tasks, we propose a new model named multiscale sparse cross-attention network (MSCN). It not only focuses on the effectiveness of feature learning but also emphasizes the rationality of feature fusion. In detail, MSCN first extracts multilevel features using a pretrained ResNet50. Also, these features are divided into high- and low-level features according to the clues they are involved. Then, a multiscale sparse cross-attention (MSC) module is developed to cross-fuse the high-level feature with various low-level features, thereby effectively mining helpful information from multilevel features. In the fusion process, MSC not only explores the multiscale messages in RS scenes but also mitigates the negative impact of irrelevant information by employing sparse operations. Third, a group convolutional block attention module (CBAM) enhancer (GCE) is presented to enhance the representation of classification features. GCE detects local salient information within classification features using grouped CBAM and further enhances crucial details by readjusting the CBAM attention weights. This way, the classification features' discrimination can be improved. We conducted extensive experiments on three public RSSC datasets. The exceptional experimental results indicate that our proposed MSCN achieves superior classification accuracy, surpassing many existing methods. Our source codes are available at https://github.com/TangXu-Group/Remote-Sensing-Images-Classification/tree/main/MSCN.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A Multiscale Attention Network for Remote Sensing Scene Images Classification
    Zhang, Guokai
    Xu, Weizhe
    Zhao, Wei
    Huang, Chenxi
    Ng, Eddie Yk
    Chen, Yongyong
    Su, Jian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 9530 - 9545
  • [2] SEMSDNet: A Multiscale Dense Network With Attention for Remote Sensing Scene Classification
    Tian, Tian
    Li, Lingling
    Chen, Weitao
    Zhou, Huabing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 5501 - 5514
  • [3] A Multiscale Self-Adaptive Attention Network for Remote Sensing Scene Classification
    Li, Lingling
    Liang, Pujiang
    Ma, Jingjing
    Jiao, Licheng
    Guo, Xiaohui
    Liu, Fang
    Sun, Chen
    REMOTE SENSING, 2020, 12 (14)
  • [4] A Multiscale Cascaded Cross-Attention Hierarchical Network for Change Detection on Bitemporal Remote Sensing Images
    Zhang, Xiaofeng
    Wang, Liejun
    Cheng, Shuli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [5] Gradient-Guided Multiscale Focal Attention Network for Remote Sensing Scene Classification
    Zhao, Yue
    Gong, Maoguo
    Qin, A. K.
    Zhang, Mingyang
    Hu, Zhuping
    Gao, Tianqi
    Pu, Yan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1
  • [6] ATTENTION BASED NETWORK FOR REMOTE SENSING SCENE CLASSIFICATION
    Liu, Shaoteng
    Wang, Qi
    Li, Xuelong
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4740 - 4743
  • [7] Attention Consistent Network for Remote Sensing Scene Classification
    Tang, Xu
    Ma, Qiushuo
    Zhang, Xiangrong
    Liu, Fang
    Ma, Jingjing
    Jiao, Licheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 2030 - 2045
  • [8] A Lightweight and Multiscale Network for Remote Sensing Image Scene Classification
    Bai, Lin
    Liu, Qingxin
    Li, Cuiling
    Zhu, Chunlin
    Ye, Zhen
    Xi, Meng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] A Multiscale Incremental Learning Network for Remote Sensing Scene Classification
    Ye, Zhen
    Zhang, Yu
    Zhang, Jinxin
    Li, Wei
    Bai, Lin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [10] Multiscale Dense Cross-Attention Mechanism with Covariance Pooling for Hyperspectral Image Scene Classification
    Liu, Runmin
    Ning, Xin
    Cai, Weiwei
    Li, Guangjun
    MOBILE INFORMATION SYSTEMS, 2021, 2021