On harmonic index of trees with a given total domination number

被引:0
作者
Du, Jianwei [1 ]
Sun, Xiaoling [1 ]
Mei, Yinzhen [1 ]
Fan, Mengyuan [1 ]
机构
[1] North Univ China, Sch Math, Taiyuan 030051, Shanxi, Peoples R China
关键词
Harmonic index; tree; total domination number;
D O I
10.1142/S0219691325500043
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Harmonic index is one of the variants of the well-known Randi & cacute; index. For a graph G, the harmonic index of G is defined by the sum of weights 2 d(u)+d(v) over all edges uv of G, where d(u) stands for the degree of vertex u in G. In this paper, an upper bound on the harmonic index of trees with a given order and total domination number is determined and the corresponding extremal trees are characterized. Moreover, our conclusions correct the results presented by Hasni et al., Sharp upper bound for harmonic index of trees with given total domination number, Ars Combin. 159 (2024) 179-186.
引用
收藏
页数:13
相关论文
共 31 条
[1]   Harmonic-arithmetic index of (molecular) trees [J].
Albalahi, Abeer M. ;
Ali, Akbar ;
Alanazi, Abdulaziz M. ;
Bhatti, Akhlaq A. ;
Hamza, Amjad E. .
CONTRIBUTIONS TO MATHEMATICS, 2023, 7 :41-47
[2]  
Ali A, 2019, MATCH-COMMUN MATH CO, V81, P249
[3]   The Geometric-Arithmetic index of trees with a given total domination number [J].
Bermudo, Sergio ;
Hasni, Roslan ;
Movahedi, Fateme ;
Napoles, Juan E. .
DISCRETE APPLIED MATHEMATICS, 2024, 345 :99-113
[4]   Upper bound for the geometric-arithmetic index of trees with given domination number [J].
Bermudo, Sergio .
DISCRETE MATHEMATICS, 2023, 346 (01)
[5]   Extremal trees for the Randic index with given domination number [J].
Bermudo, Sergio ;
Napoles, Juan E. ;
Rada, Juan .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 375
[6]   ON THE WEIERSTRASS-MANDELBROT FRACTAL FUNCTION [J].
BERRY, MV ;
LEWIS, ZV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1980, 370 (1743) :459-484
[7]  
Bondy J. A., 1976, Graph theory with applications
[8]   On extremal Zagreb indices of trees with given domination number [J].
Borovicanin, Bojana ;
Furtula, Boris .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 279 :208-218
[9]  
Fajtlowicz S., 1987, C NUMER, V60, P187, DOI DOI 10.4236/APM.2014.45021
[10]   Chebyshev Wavelet Analysis [J].
Guariglia, Emanuel ;
Guido, Rodrigo Capobianco .
JOURNAL OF FUNCTION SPACES, 2022, 2022