Euler-Lagrange study on the bubble wake of a ship with waterjet propulsion

被引:1
作者
Gong, Jie [1 ,2 ,3 ,4 ,5 ]
Su, Junjun [1 ,3 ,4 ,5 ]
Wu, Zhongwan [1 ,3 ,4 ,5 ]
机构
[1] Wuhan Univ Technol, Key Lab High Performance Ship Technol, Minist Educ, Wuhan 430063, Peoples R China
[2] Wuhan Univ Technol, Sanya Sci & Educ Innovat Pk, Sanya 572000, Peoples R China
[3] Wuhan Univ Technol, Sch Transportat, Dept Naval Architecture, Wuhan 430063, Peoples R China
[4] Wuhan Univ Technol, Sch Transportat, Dept Ocean, Wuhan 430063, Peoples R China
[5] Wuhan Univ Technol, Sch Transportat, Dept Struct Engn, Wuhan 430063, Peoples R China
基金
中国国家自然科学基金;
关键词
Bubble wake; Air entrainment; Secondary breakup; Waterjet; FLOWS; DYNAMICS; MODEL;
D O I
10.1016/j.oceaneng.2024.120173
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The physics of the breaking waves and bubble wake of a waterjet propelled ship are numerically studied. A hybrid Euler-Lagrange method is proposed to investigate the underlying mechanism of the bubble behaviors in the turbulent wake. The adaptive mesh strategy is adopted to capture the large deformed free surface with Detached Eddy Simulations (DES). Discrete droplets or bubbles are detected according to the transition criterion based on the volume fraction of the grid unit. Behaviors of multi-scale droplets/bubbles are simulated with the introduction of the breakup model. The mechanisms of air entrainment caused by the impacting jet are better understood with the analysis of the bubble generation, transport, size distribution and secondary breakup in the ship wake. A strong correlation is observed between the turbulent intensity and the bubble transportation. The visual visibility of the waterjet ship's wake depends more on the retention characteristics of small-diameter bubbles near free surface. The current approach provides an effective way to simulate the cross-scale complex flow without increasing the grid number greatly.
引用
收藏
页数:10
相关论文
共 29 条
  • [1] Observations of the Cabibbo-Suppressed decays Λc+ → nπ+ π0, nπ+ π- π+ and the Cabibbo-Favored decay Λc+ → nK- π+ π+*
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Albrecht, M.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, Y.
    Bakina, O.
    Ferroli, R. Baldini
    Balossino, I
    Ban, Y.
    Batozskaya, V
    Becker, D.
    Begzsuren, K.
    Berger, N.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bianco, E.
    Bloms, J.
    Bortone, A.
    Boyko, I
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, W. L.
    Che, G. R.
    Chelkov, G.
    Chen, C.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Z. J.
    Cheng, W. S.
    Choi, S. K.
    [J]. CHINESE PHYSICS C, 2023, 47 (02)
  • [2] Advancements in free surface RANSE simulations for sailing yacht applications
    Bohm, Christoph
    Graf, Kai
    [J]. OCEAN ENGINEERING, 2014, 90 : 11 - 20
  • [3] A polydisperse model for bubbly two-phase flow around surface ship
    Carrica, PM
    Drew, D
    Bonetto, F
    Lahey, RT
    [J]. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1999, 25 (02) : 257 - 305
  • [4] Bubble size distribution prediction for large-scale ship flows: Model evaluation and numerical issues
    Castro, Alejandro M.
    Carrica, Pablo M.
    [J]. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2013, 57 : 131 - 150
  • [5] A new Euler-Lagrangian cavitation model for tip-vortex cavitation with the effect of non-condensable gas
    Cheng, Huaiyu
    Long, Xinping
    Ji, Bin
    Peng, Xiaoxing
    Farhat, Mohamed
    [J]. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2021, 134
  • [6] Drazen D., 2010, 28 S NAV HYDR PAS CA
  • [7] Hand RE, 2010, Arxiv, DOI [arXiv:1010.4017, 10.48550/arXiv.1010.4017, DOI 10.48550/ARXIV.1010.4017]
  • [8] Analysis of the thrust deduction in waterjet propulsion - The Froude number dependence
    Eslamdoost, Mash
    Larsson, Lars
    Bensow, Rickard
    [J]. OCEAN ENGINEERING, 2018, 152 : 100 - 112
  • [9] Fu T., 2010, Technical Report NSWCCD-50-TR-2010/003
  • [10] Fu T., 2006, P 26 S NAV HYDR ROM