Predictive residual neural networks for optical trapping of small particles

被引:0
作者
Estakhri, Nasim Mohammadi [1 ,2 ]
Zahraii, Ponthea [1 ]
Kashanchi, Saman [1 ]
Estakhri, Nooshin M. [1 ,2 ,3 ]
机构
[1] Chapman Univ, Fowler Sch Engn, Orange, CA 92866 USA
[2] Chapman Univ, Schmid Coll Sci & Technol, Orange, CA 92866 USA
[3] Chapman Univ, Inst Quantum Studies, Orange, CA 92866 USA
来源
OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION XXI | 2024年 / 13112卷
基金
美国国家科学基金会;
关键词
Optical trapping; metasurfaces; residual neural networks; near-field engineering; predictive modeling; machine learning; INVERSE DESIGN; TWEEZERS; SCATTERING;
D O I
10.1117/12.3028354
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optical tweezers provide a non-contact method to trap, move, and manipulate micro- and nano-sized objects. Using properly designed dielectric and plasmonic nanostructure configurations, optical tweezers have been tailored to create stable and precise trapping for nanoscale objects. Recent advances in numerical optimization techniques allow further enhancement in nanoscale optical traps through inverse optimization of such configurations. One of the main challenges in such optimization approaches is the time-consuming nature of full-wave simulation of nanostructures and postprocessing steps to extract optical forces. To address this challenge, we introduce a surrogate solver based on residual neural networks that can accurately predict the forces exerted on a nanoparticle. Our results illustrate the possibility of capturing the highly nonlinear dynamics of local optical forces using moderate-sized datasets, particularly appealing to the inverse design of optical tweezers.
引用
收藏
页数:6
相关论文
共 41 条
  • [1] Label-free free-solution nanoaperture optical tweezers for single molecule protein studies
    Al Balushi, Ahmed A.
    Kotnala, Abhay
    Wheaton, Skyler
    Gelfand, Ryan M.
    Rajashekara, Yashaswini
    Gordon, Reuven
    [J]. ANALYST, 2015, 140 (14) : 4760 - 4778
  • [2] Machine Learning for Predicting the Surface Plasmon Resonance of Perfect and Concave Gold Nanocubes
    Arzola-Flores, J. A.
    Gonzalez, A. L.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (46) : 25447 - 25454
  • [3] ACCELERATION AND TRAPPING OF PARTICLES BY RADIATION PRESSURE
    ASHKIN, A
    [J]. PHYSICAL REVIEW LETTERS, 1970, 24 (04) : 156 - &
  • [4] Berthelot J, 2014, NAT NANOTECHNOL, V9, P295, DOI [10.1038/nnano.2014.24, 10.1038/NNANO.2014.24]
  • [5] Topology Optimization-Based Inverse Design of Plasmonic Nanodimer with Maximum Near-Field Enhancement
    Chen, Yiqin
    Hu, Yueqiang
    Zhao, Jingyi
    Deng, Yunsheng
    Wang, Zhaolong
    Cheng, Xing
    Lei, Dangyuan
    Deng, Yongbo
    Duan, Huigao
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (23)
  • [6] Christiansen RE, 2021, J OPT SOC AM B, V38, P496, DOI 10.1364/JOSAB.406048
  • [7] Inverse-designed integrated biosensors
    Didari-Bader, Azadeh
    Pelton, Sophie
    Estakhri, Mohammadi
    [J]. OPTICAL MATERIALS EXPRESS, 2024, 14 (07): : 1710 - 1720
  • [8] Inverse-designed metastructures that solve equations
    Estakhri, Nasim Mohammadi
    Edwards, Brian
    Engheta, Nader
    [J]. SCIENCE, 2019, 363 (6433) : 1333 - +
  • [9] Wave-front Transformation with Gradient Metasurfaces
    Estakhri, Nasim Mohammadi
    Alu, Andrea
    [J]. PHYSICAL REVIEW X, 2016, 6 (04):
  • [10] Tunable quantum two-photon interference with reconfigurable metasurfaces using phase-change materials
    Estakhri, Nooshin M.
    Norris, Theodore B.
    [J]. OPTICS EXPRESS, 2021, 29 (10) : 14245 - 14259