PFAN: progressive feature aggregation network for lightweight image super-resolution

被引:0
|
作者
Chen, Liqiong [1 ]
Yang, Xiangkun [1 ]
Wang, Shu [1 ]
Shen, Ying [1 ]
Wu, Jing [1 ]
Huang, Feng [1 ]
Qiu, Zhaobing [1 ]
机构
[1] Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350108, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Super-resolution; Progressive feature aggregation network; CNN; Transformer; Key information perception; Local feature enhancement;
D O I
10.1007/s00371-025-03877-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Image super-resolution (SR) has recently gained traction in various fields, including remote sensing, biomedicine, and video surveillance. Nonetheless, the majority of advancements in SR have been achieved by scaling the architecture of convolutional neural networks, which inevitably increases computational complexity. In addition, most existing SR models struggle to effectively capture high-frequency information, resulting in overly smooth reconstructed images. To address this issue, we propose a lightweight Progressive Feature Aggregation Network (PFAN), which leverages Progressive Feature Aggregation Block to enhance different features through a progressive strategy. Specifically, we propose a Key Information Perception Module for capturing high-frequency details from cross-spatial-channel dimension to recover edge features. Besides, we design a Local Feature Enhancement Module, which effectively combines multi-scale convolutions for local feature extraction and Transformer for long-range dependencies modeling. Through the progressive fusion of rich edge details and texture features, our PFAN successfully achieves better reconstruction performance. Extensive experiments on five benchmark datasets demonstrate that PFAN outperforms state-of-the-art methods and strikes a better balance across SR performance, parameters, and computational complexity. Code can be available at https://github.com/handsomeyxk/PFAN.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] PFFN: Progressive Feature Fusion Network for Lightweight Image Super-Resolution
    Zhang, Dongyang
    Li, Changyu
    Xie, Ning
    Wang, Guoqing
    Shao, Jie
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3682 - 3690
  • [2] DFAN: Dual Feature Aggregation Network for Lightweight Image Super-Resolution
    Li, Shang
    Zhang, Guixuan
    Luo, Zhengxiong
    Liu, Jie
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [3] An efficient and lightweight image super-resolution with feature network
    Zang, Yongsheng
    Zhou, Dongming
    Wang, Changcheng
    Nie, Rencan
    Guo, Yanbu
    OPTIK, 2022, 255
  • [4] Image Super-Resolution via Lightweight Attention-Directed Feature Aggregation Network
    Wang, Li
    Li, Ke
    Tang, Jingjing
    Liang, Yuying
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (02)
  • [5] Residual Feature Aggregation Network for Image Super-Resolution
    Liu, Jie
    Zhang, Wenjie
    Tang, Yuting
    Tang, Jie
    Wu, Gangshan
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2356 - 2365
  • [6] Lightweight Progressive Residual Clique Network for Image Super-Resolution
    Huang, Baojin
    He, Zheng
    Wang, Zhongyuan
    Jiang, Kui
    Wang, Guangcheng
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 767 - 772
  • [7] Spatial and Channel Aggregation Network for Lightweight Image Super-Resolution
    Wu, Xianyu
    Zuo, Linze
    Huang, Feng
    SENSORS, 2023, 23 (19)
  • [8] Lightweight Feature Fusion Network for Single Image Super-Resolution
    Yang, Wenming
    Wang, Wei
    Zhang, Xuechen
    Sun, Shuifa
    Liao, Qingmin
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (04) : 538 - 542
  • [9] Disentangled feature fusion network for lightweight image super-resolution
    Liu, Huilin
    Zhou, Jianyu
    Su, Shuzhi
    Yang, Gaoming
    Zhang, Pengfei
    DIGITAL SIGNAL PROCESSING, 2024, 154
  • [10] Lightweight image super-resolution with a feature-refined network
    Liu, Feiqiang
    Yang, Xiaomin
    De Baets, Bernard
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 111