The Effect of SiC Content on the Microstructure and Mechanical Properties of AlCoCrFeNiTi Laser Cladding High-Entropy Alloy Coatings

被引:0
|
作者
Zhang, Z. -q. [1 ]
Niu, W. [1 ,3 ]
Lei, Y. -w. [4 ]
Zheng, Y. [2 ]
机构
[1] Tiangong Univ, Sch Mech Engn, 399 Bin Shui Xi Rd, Tianjin 300387, Peoples R China
[2] Tiangong Univ, Sch Aeronaut & Astronaut, Tianjin 300387, Peoples R China
[3] Tianjin Key Lab Adv Mechatron Equipment Technol, 399 Bin Shui Xi Rd, Tianjin 300387, Peoples R China
[4] Tiangong Univ, Engn Teaching Practice Training Ctr, 399 Bin Shui Xi Rd, Xiqing 300387, Peoples R China
关键词
high-entropy alloy; laser cladding; microhardness; microstructure; SiC particles; wear resistance; WEAR BEHAVIOR; COMPOSITE;
D O I
10.1007/s11666-024-01924-y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
45 steel is widely used in manufacturing industry, but the properties of 45 steel sometimes fail to meet the requirements of special applications. High-entropy AlCoCrFeNiTi coatings with different SiC contents (0, 10, 20, and 30 wt.%) were deposited on 45 steel substrates by laser cladding technology. With the increase in SiC content, the coatings consisted of BCC1 + BCC2 phases when the SiC content was 0 and 10 wt.% and TiC and Ni4Ti3-reinforced phase + BCC1 when the SiC content was 20 and 30 wt.%, respectively. The microhardness and wear resistance of the coating increased with increasing SiC content. When the SiC content was 30 wt.%, the average hardness of the cladding coating was maximum 943HV0.3, which is about 3.7 times that of the substrate, and the coating possessed the lowest wear mass loss and friction factor. The wear mode changes from adhesive wear and oxidative wear to abrasive wear as the SiC content increased.
引用
收藏
页码:1195 / 1207
页数:13
相关论文
共 50 条
  • [21] Effects of Line Energy on Microstructure and Mechanical Properties of CoCrFeNiBSi High-Entropy Alloy Laser Cladding Coatings
    Fengyuan Shu
    Bin Wang
    Hongyun Zhao
    Caiwang Tan
    Jialiang Zhou
    Jian Zhang
    Journal of Thermal Spray Technology, 2020, 29 : 789 - 797
  • [22] Microstructure and Properties of CoCrFeNiTi High-Entropy Alloy Coating Fabricated by Laser Cladding
    Hao Liu
    Wenpeng Gao
    Jian Liu
    Xiaotong Du
    Xiaojia Li
    Haifeng Yang
    Journal of Materials Engineering and Performance, 2020, 29 : 7170 - 7178
  • [23] Microstructure and Properties of CoCrFeNiTi High-Entropy Alloy Coating Fabricated by Laser Cladding
    Liu, Hao
    Gao, Wenpeng
    Liu, Jian
    Du, Xiaotong
    Li, Xiaojia
    Yang, Haifeng
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2020, 29 (11) : 7170 - 7178
  • [24] Microstructure and Friction Properties of CoCrFeMnNiTix High-Entropy Alloy Coating by Laser Cladding
    Liu, Pengfei
    Si, Wudong
    Zhang, Dabin
    Dai, Sichao
    Jiang, Benchi
    Shu, Da
    Wu, Lulu
    Zhang, Chao
    Zhang, Meisong
    MATERIALS, 2022, 15 (13)
  • [25] Research progress in high-entropy alloy coatings by laser cladding
    Zhao Hai-chao
    Liang Xiu-bing
    Qiao Yu-lin
    Liu Jian
    Zhang Zhi-bin
    Tong Yong-gang
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2019, 47 (10): : 33 - 43
  • [26] Effects of C content on the microstructure and properties of CoCrFeNiTi0.5Mo0.5Cx high-entropy alloy coatings by laser cladding
    Lin, Tianxiang
    Feng, Meiyan
    Lian, Guofu
    Lu, Hua
    Chen, Changrong
    Huang, Xu
    Journal of Materials Research and Technology, 2024, 33 : 1540 - 1557
  • [27] Microstructure and properties of laser cladding CoCrFeNiSix high-entropy alloy coating
    Hao W.-J.
    Sun R.-L.
    Niu W.
    Tan J.-H.
    Li X.-L.
    Surface Technology, 2021, 50 (05): : 87 - 94
  • [28] Effects of pulse frequency on the microstructure and properties of AlCoCrFeNiMo(TiC) high-entropy alloy coatings prepared by laser cladding
    Yu, Kedong
    Zhao, Wei
    Li, Zhen
    Zhang, Bingrong
    Xiao, Guangchun
    Zhang, Hui
    SURFACE & COATINGS TECHNOLOGY, 2023, 458
  • [29] Effect of Ti and Mo content changes on microstructure and properties of laser cladding FeCoCrNiMn high entropy alloy coatings
    Kong, Lingchen
    Shi, Chuanwei
    Hao, Xuan
    Wang, Shenhao
    Huo, Yushuang
    Zhu, Zhiheng
    Sun, Junhua
    INTERMETALLICS, 2024, 175
  • [30] The influence of WC content on the microstructure and properties of laser cladding CoCrFeMnNiSi1.6 high-entropy alloy coatings
    Feng, Meiyan
    Lin, Tianxiang
    Lian, Guofu
    Chen, Changrong
    Huang, Xu
    CERAMICS INTERNATIONAL, 2024, 50 (24) : 55286 - 55306