Massless field equations for spin 3/2 in dimension 6

被引:0
|
作者
Lavicka, R. [1 ]
Soucek, V. [1 ]
Wang, W. [2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Sokolovska 83, Prague 18675, Czech Republic
[2] Zhejiang Univ, Dept Math, Zhejiang 310027, Peoples R China
关键词
Massless fields ofspin 3/2; Stein-Weiss equations; Fischer decomposition; Howe duality; OPERATORS; HOMOLOGY;
D O I
10.1016/j.geomphys.2024.105341
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Main topic of the paper is a study of properties of massless fields of spin 3/2. A lot of information is available already for massless fields in dimension 4. Here, we concentrate on dimension 6 and we are using the fact that the group SL(4, C ) is isomorphic with the group Spin(6, C ) . It makes it possible to use tensor formalism for massless fields. Main problems treated in the paper are a description of fields which need to be considered in the spin 3/2 case, a suitable choice of equations they should satisfy, irreducibility of homogeneous solutions of massless field equations, the Fischer decomposition and the Howe duality for such fields. (c) 2024 Published by Elsevier B.V.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] General massless field equations for higher spin in dimension 4
    Lavicka, Roman
    Soucek, Vladimir
    Wang, Wei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (10) : 7949 - 7961
  • [2] Explicit Penrose Transform for Massless Field Equations of General Spin in Dimension Four
    Brackx, Fred
    De Schepper, Hennie
    Krump, Lukas
    Soucek, Vladimir
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [3] EINSTEINS EQUATIONS AS DESCRIBING A MASSLESS TENSOR FIELD WITH SPIN 2
    OGIEVETS.VI
    POLUBARI.IV
    DOKLADY AKADEMII NAUK SSSR, 1966, 166 (03): : 584 - &
  • [4] Fischer Decomposition of Massless Fields for Spin 3/2 in Dimension 4
    Fred Brackx
    Hennie De Schepper
    Roman Lávička
    Vladimír Souček
    Wei Wang
    Advances in Applied Clifford Algebras, 2022, 32
  • [5] Fischer Decomposition of Massless Fields for Spin 3/2 in Dimension 4
    Brackx, Fred
    De Schepper, Hennie
    Lavicka, Roman
    Soucek, Vladimir
    Wang, Wei
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (01)
  • [6] IRREDUCIBILITY OF MASSLESS SPIN 3-2 FIELD
    FUKUYAMA, T
    PROGRESS OF THEORETICAL PHYSICS, 1978, 60 (06): : 1951 - 1952
  • [7] CONFORMALLY COVARIANT MASSLESS SPIN-2 FIELD-EQUATIONS
    DREW, MS
    GEGENBERG, JD
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1980, 60 (01): : 41 - 56
  • [8] Unification of massless field equations solutions for any spin
    Hojman, Sergio A.
    Asenjo, Felipe A.
    EPL, 2022, 137 (02)
  • [9] ON SOLUTION SPACES OF MASSLESS FIELD-EQUATIONS WITH ARBITRARY SPIN
    HEIDENREICH, W
    JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (08) : 2154 - 2159
  • [10] Global Cauchy problem for linear massless spin 3/2 field equations in the Schwarzschild space-time
    Nicolas, JP
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (03): : 277 - 282