Acute Administration of Calafate (Berberis microphylla) Extract Induces the Expression of Thermogenic Markers and Modulates Gut Microbiota in Mice Fed a High-Fat Chow Diet

被引:0
|
作者
Duarte, Lissette [1 ]
Villanueva, Vanessa [1 ]
Barroux, Robert [1 ]
Orellana, Juan Francisco [1 ]
Poblete-Aro, Carlos [2 ]
Gotteland, Martin [1 ]
Castro, Mauricio [3 ]
Magne, Fabien [4 ]
Garcia-Diaz, Diego F. [1 ]
机构
[1] Univ Chile, Fac Med, Dept Nutr, Santiago, Chile
[2] Univ Santiago Chile, Fac Ciencias Med, Escuela Ciencias Actividad Fis Deporte & Salud, Santiago, Chile
[3] Univ Finis Terrae, Fac Med, Lab Fisiol Ejercicio & Metab, Escuela Kinesiol, Santiago, Chile
[4] Univ Chile, Fac Med, Inst Ciencias Biomed, Programa Microbiol & Micol, Santiago, Chile
关键词
Calafate; Polyphenols; Brown adipose tissue; Thermogenesis; Gut microbiota; BROWN ADIPOSE-TISSUE; POLYPHENOLS;
D O I
10.1159/000539881
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Introduction: Obesity, characterized by excess adipose tissue, is a major public health problem worldwide. Brown adipose tissue (BAT) and beige adipose tissue participate in thermogenesis through uncoupling protein 1 (UCP1). Polyphenols including those from Calafate (a native polyphenol-rich Patagonian berry), are considered as potential anti-obesity compounds due to their pro-thermogenic characteristics. However, polyphenols are mainly metabolized by the gut microbiota (GM) that may influence their bioactivity and bioavailability. The aim of this study was to determine the impact of dietary administration with a Calafate polyphenol-rich extract on thermogenic activity of BAT and beige adipose tissue and GM composition. Methods: Eight-week-old C57BL6 mice (n = 30) were divided into 4 groups to receive for 24 weeks a control diet (C), a high-fat diet alone (HF), or high-fat diet supplemented with Calafate extract (HFC) or the same high-fat diet supplemented with Calafate extract but treated with antibiotics (HFCAB) from week 19-20. Administration with Calafate extract (50 mg/kg per day) was carried out for 3 weeks from week 21-23 in the HFC and HFCAB groups. After euthanasia, gene expression of thermogenic markers was analyzed in BAT and inguinal white adipose tissue (iWAT). Transmission electron microscopy was performed to assess mitochondrial morphology and cristae density in BAT. GM diversity and composition were characterized by deep sequencing with the MiSeq Illumina platform. Results: Calafate extract administration had no effect on weight gain in mice fed a high-fat diet. However, it prevented alterations in mitochondrial cristae induced by HFD and increased Dio2 expression in BAT and iWAT. The intervention also influenced the GM composition, preventing changes in specific bacterial taxa induced by the high-fat diet. However, the antibiotic treatment prevented in part these effects, suggesting the implications of GM. Conclusion: These results suggest that the acute administration of a Calafate extract modulates the expression of thermogenic markers, prevents alterations in mitochondrial cristae and intestinal microbiota in preclinical models. The study highlights the complex interaction between polyphenols, thermogenesis, and the GM, providing valuable insights into their potential roles in the treatment of obesity-related metabolic diseases. (c) 2024 The Author(s). Published by S. Karger AG, Basel
引用
收藏
页码:72 / 81
页数:10
相关论文
共 50 条
  • [21] Effect of A Polyphenol-Rich Canarium album Extract on the Composition of the Gut Microbiota of Mice Fed a High-Fat Diet
    Zhang, Ning-Ning
    Guo, Wen-Hui
    Hu, Han
    Zhou, A-Rong
    Liu, Qing-Pei
    Zheng, Bao-Dong
    Zeng, Shao-Xiao
    MOLECULES, 2018, 23 (09):
  • [22] Milk fat globule membrane supplementation modulates the gut microbiota and attenuates metabolic endotoxemia in high-fat diet-fed mice
    Li, Tiange
    Gao, Jing
    Du, Min
    Mao, Xueying
    JOURNAL OF FUNCTIONAL FOODS, 2018, 47 : 56 - 65
  • [23] Oral administration of camellia oil ameliorates obesity and modifies the gut microbiota composition in mice fed a high-fat diet
    Huang, Tianyang
    Zhou, Weikang
    Ma, Xiangguo
    Jiang, Jianhui
    Zhang, Fuan
    Zhou, Wanmeng
    He, Hao
    Cui, Guozhen
    FEMS MICROBIOLOGY LETTERS, 2021, 368 (10)
  • [24] Fucoidan alleviates dyslipidemia and modulates gut microbiota in high-fat diet-induced mice
    Liu, Min
    Ma, Lin
    Chen, Qichao
    Zhang, Pengyu
    Chen, Chao
    Jia, Lilin
    Li, Huajun
    JOURNAL OF FUNCTIONAL FOODS, 2018, 48 : 220 - 227
  • [25] Polyphenol-rich oolong tea alleviates obesity and modulates gut microbiota in high-fat diet-fed mice
    Li, Ang
    Wang, Jin
    Kou, Ruixin
    Chen, Mengshan
    Zhang, Bowei
    Zhang, Yan
    Liu, Jingmin
    Xing, Xiaolong
    Peng, Bo
    Wang, Shuo
    FRONTIERS IN NUTRITION, 2022, 9
  • [26] Eugenol, A Major Component of Clove Oil, Attenuates Adiposity, and Modulates Gut Microbiota in High-Fat Diet-Fed Mice
    Li, Mengjie
    Zhao, Yuhan
    Wang, Yanan
    Geng, Ruixuan
    Fang, Jingjing
    Kang, Seong-Gook
    Huang, Kunlun
    Tong, Tao
    MOLECULAR NUTRITION & FOOD RESEARCH, 2022, 66 (20)
  • [27] Niacin Improves Gut Function and Microbiota Composition in High-Fat Diet-Fed Mice
    Fang, Han
    Graff, Emily C.
    Li, Zhuoyue
    Globa, Ludmila
    Sorokulova, Iryna B.
    Judd, Robert L.
    DIABETES, 2017, 66 : LB82 - LB83
  • [28] The signatures of liver metabolomics and gut microbiota in high-fat diet fed mice supplemented with rhododendrol
    Li, Xiaoping
    Wang, Yu
    Yu, Chengwei
    Yao, Yexuan
    Chen, Xi
    Deng, Ze-Yuan
    Yao, Zhao
    Luo, Ting
    FOOD & FUNCTION, 2022, 13 (24) : 13052 - 13063
  • [29] Effects of Ocimum basilicum mucilage on hyperlipidemia and gut microbiota on mice fed a high-fat diet
    Nguyen-Le, Duy
    Nguyen, Cao-Tri
    Ngo-Phan, Minh -Vu
    Tran, Thuoc Linh
    Phan, Minh-Duy
    Unno, Tatsuya
    Tran-Van, Hieu
    BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE, 2023, 30
  • [30] Gut microbiota mediates positive effects of liraglutide on dyslipidemia in mice fed a high-fat diet
    Zhao, Li
    Qiu, Yue
    Zhang, Panpan
    Wu, Xunan
    Zhao, Zhicong
    Deng, Xia
    Yang, Ling
    Wang, Dong
    Yuan, Guoyue
    FRONTIERS IN NUTRITION, 2022, 9