Perfect fluid coupled to a solenoidal field which enjoys the l-conformal Galilei symmetry

被引:0
作者
Snegirev, Timofei [1 ]
机构
[1] Tomsk State Univ Control Syst & Radioelect, Lab Appl Math & Theoret Phys, Lenin Ave 40, Tomsk 634050, Russia
基金
俄罗斯科学基金会;
关键词
KINEMATICAL INVARIANCE GROUP;
D O I
10.1016/j.nuclphysb.2024.116526
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A non-relativistic (Galilei-invariant) model of a perfect fluid coupled to a solenoidal field in arbitrary spatial dimension is considered. It contains an arbitrary parameter kappa and in the particular case of kappa = 1 it describes a perfect fluid coupled to a magnetic field. For a special value of kappa, the theory admits the Schrodinger symmetry group which is consistent with the magnetic case in two spatial dimensions only. Generalization to the case of the l-conformal Galilei group for an arbitrary half-integer parameter l is constructed.
引用
收藏
页数:6
相关论文
共 25 条
  • [1] On dynamical realizations of l-conformal Galilei groups
    Andrzejewski, K.
    Gonera, J.
    Kosinski, P.
    Maslanka, P.
    [J]. NUCLEAR PHYSICS B, 2013, 876 (01) : 309 - 321
  • [2] Gravity duals for nonrelativistic conformal field theories
    Balasubramanian, Koushik
    McGreevy, John
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (06)
  • [3] Ricci-flat spacetimes with l-conformal Galilei symmetry
    Chernyavsky, D.
    Galajinsky, A.
    [J]. PHYSICS LETTERS B, 2016, 754 : 249 - 253
  • [4] Conformal Galilei groups, Veronese curves and Newton-Hooke spacetimes
    Duval, C.
    Horvathy, P. A.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (33)
  • [5] Non-relativistic conformal symmetries and Newton-Cartan structures
    Duval, C.
    Horvathy, P. A.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (46)
  • [6] Galilean conformal mechanics from nonlinear realizations
    Fedoruk, Sergey
    Ivanov, Evgeny
    Lukierski, Jerzy
    [J]. PHYSICAL REVIEW D, 2011, 83 (08):
  • [7] Group-theoretic approach to perfect fluid equations with conformal symmetry
    Galajinsky, Anton
    [J]. PHYSICAL REVIEW D, 2023, 107 (02)
  • [8] Equations of fluid dynamics with the l-conformal Galilei symmetry
    Galajinsky, Anton
    [J]. NUCLEAR PHYSICS B, 2022, 984
  • [9] Dynamical realization of l-conformal Galilei algebra and oscillators
    Galajinsky, Anton
    Masterov, Ivan
    [J]. NUCLEAR PHYSICS B, 2013, 866 (02) : 212 - 227
  • [10] Remarks on l-conformal extension of the Newton-Hooke algebra
    Galajinsky, Anton
    Masterov, Ivan
    [J]. PHYSICS LETTERS B, 2011, 702 (04) : 265 - 267