Delocalizing d Orbital in Co-N4-Centered Molecular Catalysts via π-d Interactions for CO2 Electroreduction

被引:0
|
作者
Fu, Jiaju [1 ]
Shi, Zhuo-Qi [1 ,2 ]
Wang, Yu-Qi [1 ,2 ]
He, Chao [1 ,2 ]
Wu, Ze-Yuan [1 ,2 ]
Lyu, Zhen -Hua [1 ,2 ]
Jiang, Zhe [1 ,2 ]
Wang, Dong [1 ,2 ]
Hu, Jin -Song [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci BNLMS, CAS Key Lab Mol Nanostruct & Nanotechnol, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
CCS CHEMISTRY | 2024年
基金
中国国家自然科学基金;
关键词
electrocatalytic CO 2 reduction; molecular catalysts; pi- d interaction; conjugated structure; delocalized d orbital; CARBON-DIOXIDE; REDUCTION; ELECTRODE;
D O I
10.31635/ccschem.024.202404850
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecules with metal-N 4 centers have been widely applied as efficient catalysts in electrocatalytic CO 2 reduction (ECR) to CO. However, the localized d orbitals of the metal centers significantly hindered the mass and electron transfer of the CO 2-to-CO process. Herein, we propose a pi- d interaction regulation strategy that involves tuning the molecular conjugated structure to delocalize the metal d orbital of Co-N 4-centered molecular catalysts for ECR. The cobalt naphthalocyanine (CoNPc) with an extended conjugated structure exhibits a superior ECR performance compared to cobalt phthalocyanine (CoPc) and cobalt octaethylporphyrin (CoOEP), with the highest CO faradaic efficiency (FE CO ), reaching 96.1% at -0.8 V versus reversible hydrogen electrode in an H-cell and 97% at 100 mA cm -2 in flow cell using a bicarbonate electrolyte. Furthermore, the electrochemical scanning tunneling microscopy and theoretical analyses reveal that the extended conjugated structures promoted CO 2 adsorption and CO desorption on Co-N 4 active sites, thus accelerating the ECR process. These results provide insights into the design of high-performance metal-N 4-centered electrocatalysts.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Reordering d Orbital Energies of Single-Site Catalysts for CO2 Electroreduction
    Han, Jianyu
    An, Pengfei
    Liu, Shuhu
    Zhang, Xiaofei
    Wang, Dawei
    Yuan, Yi
    Guo, Jun
    Qiu, Xueying
    Hou, Ke
    Shi, Lin
    Zhang, Yin
    Zhao, Shenlong
    Long, Chang
    Tang, Zhiyong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (36) : 12711 - 12716
  • [2] Electroreduction of CO2 to methane with triazole molecular catalysts
    Xu, Zhanyou
    Lu, Ruihu
    Lin, Zih-Yi
    Wu, Weixing
    Tsai, Hsin-Jung
    Lu, Qian
    Li, Yuguang C.
    Hung, Sung-Fu
    Song, Chunshan
    Yu, Jimmy C.
    Wang, Ziyun
    Wang, Ying
    NATURE ENERGY, 2024, 9 (11): : 1397 - 1406
  • [3] Supported molecular catalysts for the heterogeneous CO2 electroreduction
    Hu, Xin-Ming
    Pedersen, Steen U.
    Daasbjerg, Kim
    CURRENT OPINION IN ELECTROCHEMISTRY, 2019, 15 : 148 - 154
  • [4] 2D Metal Oxyhalide-Derived Catalysts for Efficient CO2 Electroreduction
    de Arquer, F. Pelayo Garcia
    Bushuyev, Oleksandr S.
    De Luna, Phil
    Cao-Thang Dinh
    Seifitokaldani, Ali
    Saidaminov, Makhsud I.
    Tan, Chih-Shan
    Quan, Li Na
    Proppe, Andrew
    Kibria, Md. Golam
    Kelley, Shana O.
    Sinton, David
    Sargent, Edward H.
    ADVANCED MATERIALS, 2018, 30 (38)
  • [5] Supramolecular Anchoring of Fe(III) Molecular Redox Catalysts into Graphitic Surfaces Via CH-π and π-π Interactions for CO2 Electroreduction
    Luo, Zhi-Mei
    Wang, Jia-Wei
    Nicaso, Marco
    Gil-Sepulcre, Marcos
    Solano, Eduardo
    Nikolaou, Vasilis
    Benet, Jordi
    Segado-Centellas, Mireia
    Bo, Carles
    Llobet, Antoni
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (46)
  • [6] Molecular enhancement of Cu-based catalysts for CO2 electroreduction
    Luo, Haiqiang
    Li, Bo
    Ma, Jian-Gong
    Cheng, Peng
    CHEMICAL COMMUNICATIONS, 2024, 60 (70) : 9298 - 9309
  • [7] Strong p-d Orbital Hybridization on Bismuth Nanosheets for High Performing CO2 Electroreduction
    Cao, Xueying
    Tian, Yadong
    Ma, Jizhen
    Guo, Weijian
    Cai, Wenwen
    Zhang, Jintao
    ADVANCED MATERIALS, 2024, 36 (06)
  • [8] Pyrazolium Ionic Liquid Co-catalysts for the Electroreduction of CO2
    Vasilyev, Dmitry
    Shirzadi, Erfan
    Rudnev, Alexander V.
    Broekmann, Peter
    Dyson, Paul J.
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (10): : 5124 - 5128
  • [9] Atomic Indium Catalysts for Switching CO2 Electroreduction Products from Formate to CO
    Guo, Weiwei
    Tan, Xingxing
    Bi, Jiahui
    Xu, Liang
    Yang, Dexin
    Chen, Chunjun
    Zhu, Qinggong
    Ma, Jun
    Tayal, Akhil
    Ma, Jingyuan
    Huang, Yuying
    Sun, Xiaofu
    Liu, Shoujie
    Han, Buxing
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (18) : 6877 - 6885
  • [10] Immobilization strategies for porphyrin-based molecular catalysts for the electroreduction of CO2
    Abdinejad, Maryam
    Tang, Keith
    Dao, Caitlin
    Saedy, Saeed
    Burdyny, Tom
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (14) : 7626 - 7636