Stability analysis and optimization of stack oxide junctionless finFET based ammonia gas sensor

被引:0
|
作者
Babbar, Divya [1 ]
Garg, Neha [1 ]
Kabra, Sneha [1 ]
机构
[1] Univ Delhi, Shaheed Rajguru Coll Appl Sci Women, Modeling & Simulat Res Lab, New Delhi 110096, India
来源
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS | 2025年
关键词
D O I
10.1007/s00542-025-05849-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work explores, designing and analysis of stack oxide junctionless FinFET (SO-JL FinFET) based ammonia (NH3) gas sensor. In order to detect the presence of NH3, Cobalt (Co) is used as catalytic gate electrode with stacking of SiO2/HfO2 as oxide. The proposed device has been designed using Sentaurus TCAD simulator and to validate the simulation methods and models, the junctionless FinFET has been calibrated with the experimental results. The sensing performance of SO-JL FinFET NH3 sensor is illustrated through change in work function of gate upon exposure to ammonia which alters various sensing metrices of the sensor. Variation in surface potential and other electrical parameters such as threshold voltage (VTH), transfer characteristics, switching ratio (ION/IOFF), OFF current, threshold voltage, switching ratio and subthreshold slope sensitivity (SIOFF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S}_{{I}_{OFF}}$$\end{document}, SVTH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S}_{{V}_{TH}}$$\end{document}, SIONIONIOFFIOFF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{{{\raise0.7ex\hbox{${I_{ON} }$} \!\mathord{\left/ {\vphantom {{I_{ON} } {I_{OFF} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${I_{OFF} }$}}}}$$\end{document} and SSS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S}_{SS}$$\end{document} respectively) have been analyzed at different concentration of ammonia gas. Simulation results reveal that proposed sensor exhibit high SIOFF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S}_{{I}_{OFF}}$$\end{document} of 5.65 x 103, SVTH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S}_{{V}_{TH}}$$\end{document} of 0.51 and SIONIONIOFFIOFF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{{{\raise0.7ex\hbox{${I_{ON} }$} \!\mathord{\left/ {\vphantom {{I_{ON} } {I_{OFF} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${I_{OFF} }$}}}}$$\end{document} of 3.851 x 103 at work function change (Delta phi M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\phi }_{M}$$\end{document}) of 250 meV. Fin width and Fin height have been optimized to ensure high sensitivity. Additionally, to test the repeatability and stability of proposed device, statistical analysis has been carried out to evaluate coefficient of variation of sensitivity parameters. The proposed sensor has also been examined for reproducibility and results obtained demonstrate that SO-JL FinFET NH3 sensor is repeatable and adequately stable with settling time of 1.42 ns at Delta phi M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\phi }_{M}$$\end{document} = 250 meV. Further, the reliability of SO-JL FinFET NH3 gas sensor has been investigated over wide temperature range (250K-400K). Lastly, a thorough comparative assessment has been performed with existing ammonia gas sensors and findings of this analysis reveals that proposed sensor is highly sensitive and a promising contender for ammonia sensing.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Designing and Reliability Assessment of Stack Oxide Double Gate Junctionless Transistor Based Ammonia Gas Sensor
    Babbar, Divya
    Garg, Neha
    Kabra, Sneha
    SENSING AND IMAGING, 2025, 26 (01):
  • [2] Gate Oxide Induced Reliability Assessment of Junctionless FinFET-based Hydrogen Gas Sensor
    Gandhi, Navneet
    Jaisawal, Rajeewa Kumar
    Rathore, Sunil
    Kondekar, P. N.
    Dixit, Ankit
    Kumar, Navneen
    Georgiev, Vihar
    Bagga, Navjeet
    2023 IEEE SENSORS, 2023,
  • [3] Comparative Analysis of Junctionless FinFET and Inverted Mode FinFET as Phosphine (PH3) Gas Sensor
    Sehgal, Himani Dua
    Pratap, Yogesh
    Gupta, Mridula
    Kabra, Sneha
    Pal, Praveen
    2020 5TH INTERNATIONAL CONFERENCE ON DEVICES, CIRCUITS AND SYSTEMS (ICDCS' 20), 2020, : 193 - 197
  • [4] Demonstration of a Junctionless Negative Capacitance FinFET-based Hydrogen Gas Sensor: A Reliability Perspective
    Gandhi, Navneet
    Jaisawal, Rajeewa Kumar
    Rathore, Sunil
    Kondekar, P. N.
    Banchhor, Shashank
    Bagga, Navjeet
    2023 7TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM, 2023,
  • [5] Sensitivity and Reliability Assessment of a Strained Silicon Junctionless FinFET-based Hydrogen Gas Sensor
    Gandhi, Navneet
    Rathore, Sunil
    Jaisawal, Rajeewa Kumar
    Kondekar, P. N.
    Kumar, Naveen
    Dixit, Ankit
    Georgiev, Vihar
    Bagga, Navjeet
    2024 IEEE LATIN AMERICAN ELECTRON DEVICES CONFERENCE, LAEDC, 2024,
  • [6] Sensitivity analysis on stack gate-dielectric GaAs tri gate FinFET based oxygen gas sensor
    Kumari, Aprajita
    Das, Rajashree
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2024, 130 (06):
  • [7] Performance Optimization and Sensitivity Analysis of Junctionless FinFET with Asymmetric Doping Profile
    Ahangari, Zahra
    Asadi, Ehsan
    Hosseini, Seied Ali
    JOURNAL OF NANOANALYSIS, 2020, 7 (04):
  • [8] Unveiling the Self-Heating and Process Variation Reliability of a Junctionless FinFET-Based Hydrogen Gas Sensor
    Gandhi, Navneet
    Rathore, Sunil
    Jaisawal, Rajeewa Kumar
    Kondekar, P. N.
    Dey, Sayan
    Bagga, Navjeet
    IEEE SENSORS LETTERS, 2023, 7 (09)
  • [9] A proof of concept for reliability aware analysis of junctionless negative capacitance FinFET-based hydrogen sensor
    Gandhi, Navneet
    Jaisawal, Rajeewa Kumar
    Rathore, Sunil
    Kondekar, P. N.
    Bagga, Navjeet
    SMART MATERIALS AND STRUCTURES, 2024, 33 (03)
  • [10] Ammonia gas sensor based on aniline reduced graphene oxide
    Huang, Xiaolu
    Hu, Nantao
    Wang, Yanyan
    Zhang, Yafei
    LEADING EDGE OF MICRO-NANO SCIENCE AND TECHNOLOGY, 2013, 669 : 79 - +