Nonmonotonic temperature dependence of electron viscosity and crossover to high-temperature universal viscous fluid in monolayer and bilayer graphene

被引:0
作者
Yudhistira, Indra [1 ,2 ,3 ]
Afrose, Ramal [1 ,2 ]
Adam, Shaffique [1 ,2 ,4 ,5 ,6 ]
机构
[1] Natl Univ Singapore, Ctr Adv 2D Mat, 6 Sci Dr 2, Singapore 117546, Singapore
[2] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117551, Singapore
[3] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany
[4] Natl Univ Singapore, Dept Mat Sci & Engn, 9 Engn Dr 1, Singapore 117575, Singapore
[5] Yale NUS Coll, 16 Coll Ave West, Singapore 138527, Singapore
[6] Washington Univ, Dept Phys, St Louis, MO 63130 USA
基金
新加坡国家研究基金会;
关键词
FLOW; RESISTANCE; CONDUCTION; TRANSPORT;
D O I
10.1103/PhysRevB.111.085433
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrons in quantum matter behave like a fluid when the quantum-mechanical carrier-carrier scattering dominates over other relaxation mechanisms. By combining a microscopic treatment of electron-electron interactions within the random phase approximation with a phenomenological Navier-Stokes-like equation, we predict that in the limit of high temperature and strong Coulomb interactions, both monolayer graphene and bilayer graphene exhibit a universal behavior in dynamic viscosity. We find that the dynamic viscosity to entropy density ratio for bilayer graphene is closer to the holographic bound, suggesting that such a bound might be observable in a condensed matter system. We discuss how this could be observed experimentally using magnetoconductance measurements in a Corbino geometry for a realistic range of temperature and carrier density.
引用
收藏
页数:13
相关论文
共 65 条
[1]   Boltzmann transport and residual conductivity in bilayer graphene [J].
Adam, Shaffique ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2008, 77 (11)
[2]   Direct observation of vortices in an electron fluid [J].
Aharon-Steinberg, A. ;
Volkl, T. ;
Kaplan, A. ;
Pariari, A. K. ;
Roy, I. ;
Holder, T. ;
Wolf, Y. ;
Meltzer, A. Y. ;
Myasoedov, Y. ;
Huber, M. E. ;
Yan, B. ;
Falkovich, G. ;
Levitov, L. S. ;
Hucker, M. ;
Zeldov, E. .
NATURE, 2022, 607 (7917) :74-+
[3]   Viscosity of two-dimensional electrons [J].
Alekseev, P. S. ;
Dmitriev, A. P. .
PHYSICAL REVIEW B, 2020, 102 (24)
[4]   Negative Magnetoresistance in Viscous Flow of Two-Dimensional Electrons [J].
Alekseev, P. S. .
PHYSICAL REVIEW LETTERS, 2016, 117 (16)
[5]   ELECTRONIC-PROPERTIES OF TWO-DIMENSIONAL SYSTEMS [J].
ANDO, T ;
FOWLER, AB ;
STERN, F .
REVIEWS OF MODERN PHYSICS, 1982, 54 (02) :437-672
[6]   The contribution to the electrical resistance of metals from collisions between electrons [J].
Baber, WG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1937, 158 (A894) :0383-0396
[7]   Negative local resistance caused by viscous electron backflow in graphene [J].
Bandurin, D. A. ;
Torre, I. ;
Kumar, R. Krishna ;
Ben Shalom, M. ;
Tomadin, A. ;
Principi, A. ;
Auton, G. H. ;
Khestanova, E. ;
Novoselov, K. S. ;
Grigorieva, I. V. ;
Ponomarenko, L. A. ;
Geim, A. K. ;
Polini, M. .
SCIENCE, 2016, 351 (6277) :1055-1058
[8]   Measuring Hall viscosity of graphene's electron fluid [J].
Berdyugin, A. I. ;
Xu, S. G. ;
Pellegrino, F. M. D. ;
Kumar, R. Krishna ;
Principi, A. ;
Torre, I. ;
Ben Shalom, M. ;
Taniguchi, T. ;
Watanabe, K. ;
Grigorieva, I. V. ;
Polini, M. ;
Geim, A. K. ;
Bandurin, D. A. .
SCIENCE, 2019, 364 (6436) :163-+
[9]   Scanning gate microscopy in a viscous electron fluid [J].
Braem, B. A. ;
Pellegrino, F. M. D. ;
Principi, A. ;
Roeoesli, M. ;
Gold, C. ;
Hennel, S. ;
Koski, J., V ;
Berl, M. ;
Dietsche, W. ;
Wegscheider, W. ;
Polini, M. ;
Ihn, T. ;
Ensslin, K. .
PHYSICAL REVIEW B, 2018, 98 (24)
[10]   Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene [J].
Crossno, Jesse ;
Shi, Jing K. ;
Wang, Ke ;
Liu, Xiaomeng ;
Harzheim, Achim ;
Lucas, Andrew ;
Sachdev, Subir ;
Kim, Philip ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Ohki, Thomas A. ;
Fong, Kin Chung .
SCIENCE, 2016, 351 (6277) :1058-1061