SYSTEM VARIABLE REDUCTION AND GLOBAL SENSITIVITY ANALYSIS FOR A COMPLEX MODEL OF CANCER CELL DIFFERENTIATION

被引:0
作者
Margarit, David h. [1 ,5 ]
Paccosi, Gustavo [2 ]
Pagnani, Andrea [3 ,4 ]
Reale, Marcela v. [1 ,5 ,6 ]
Scagliotti, Ariel f. [7 ]
Romanelli, Lilia m. [1 ,5 ]
机构
[1] Univ Nacl Gen Sarmiento UNGS, Inst Ciencias ICI, J M Gutierrez 1150,B1613, Buenos Aires, Argentina
[2] Univ Nacl Gen Sarmiento UNGS, Inst Desarrollo Humano IDH, J M Gutierrez 1150,B1613, Buenos Aires, Argentina
[3] Politecn Torino, Dipartimento Sci Applicata & Tecnol DISAT, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[4] IRCCS Candiolo, Italian Inst Genom Med IIGM, SP 142, I-10060 Candiolo, TO, Italy
[5] Consejo Nacl Invest Cient & Tecn CONICET, Godoy Cruz 2290,C1425, Ciudad Autonoma Buenos Ai, Argentina
[6] Univ Nacl Matanza UNLaM, Dept Ingn Invest Tecnol, Florencio Varela 1903,B1754, Buenos Aires, Argentina
[7] Comis Nacl Energia Atom CNEA, Gerencia Quim, Azopardo 313,M5501, Godoy Cruz, Mendoza, Argentina
关键词
Reduction of System; Global Sensitivity Analysis; Cancer Cell Differentiation; Mathematical Modeling; Dynamical Systems; MATHEMATICAL-MODEL; TUMOR MICROENVIRONMENT; DYNAMICS;
D O I
10.1142/S021833902550007X
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Model reduction aims to simplify complex models by decreasing the number of equations, variables, or parameters while preserving key characteristics. This approach enhances accessibility, comprehensibility, and computational efficiency, enabling a more focused analysis of relevant variables. In this study, we describe the reduction process of a population model that incorporates cancer cell differentiation and its interaction with the immune system, maintaining the fundamental dynamics and evolution of the original model. This led to a substantial reduction in variables and parameters, creating a more efficient model suitable for computational simulations, mathematical analysis, and quantitative understanding of population dynamics. Additionally, we performed a global sensitivity analysis of model parameters using the Sobol and eFast methods, revealing insights into differences and similarities in results from a biological perspective. Our findings emphasize the critical importance of understanding and controlling parameters related to the reproduction and death rates of differentiated cancer cells, as small variations in these parameters can have significant effects on model outcomes. This underscores the importance of thoroughly understanding these essential biological variables and processes in cancer treatment, as they have a significant impact on model outcomes and, consequently, on the development of more effective therapies.
引用
收藏
页码:335 / 374
页数:40
相关论文
共 89 条
[1]   Variance-based sensitivity analysis for time-dependent processes [J].
Alexanderian, Alen ;
Gremaud, Pierre A. ;
Smith, Ralph C. .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 196
[2]   Dimensionality Reduction, Modelling, and Optimization of Multivariate Problems Based on Machine Learning [J].
Alswaitti, Mohammed ;
Siddique, Kamran ;
Jiang, Shulei ;
Alomoush, Waleed ;
Alrosan, Ayat .
SYMMETRY-BASEL, 2022, 14 (07)
[3]  
[Anonymous], 2020, MATLAB
[4]  
[Anonymous], 2019, PROC COMPUT SCI165
[5]   Exploring how ecological and epidemiological processes shape multi-host disease dynamics using global sensitivity analysis [J].
Arachchilage, Kalpana Hanthanan ;
Hussaini, Mohammed Y. ;
Cogan, N. G. ;
Cortez, Michael H. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2023, 86 (05)
[6]  
Arciero JC, 2004, DISCRETE CONT DYN-B, V4, P39
[7]  
Baharlou R, 2020, J CELLULAR PHYSIOL23, P90
[8]   Computational Modeling, Formal Analysis, and Tools for Systems Biology [J].
Bartocci, Ezio ;
Lio, Pietro .
PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (01)
[9]  
Belkhode PN, 2021, ROM J ACOUST VIB, V18, P93
[10]  
Benesty J, 2009, PEARSON CORRELATION, P84