Room temperature sensing of CO2 using C3-symmetry pyridinium-based porous ionic polymers with triazine or benzene cores

被引:1
作者
Alshubramy, Maha A. [1 ]
Alamry, Khalid A. [1 ]
Alorfi, Hajar S. [1 ]
Ismail, Sameh H. [2 ]
Rezki, Nadjet [3 ]
Aouad, Mohamed Reda [3 ]
Al-Sodies, Salsabeel [1 ,3 ]
Hussein, Mahmoud A. [1 ,4 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Chem Dept, Jeddah 21589, Saudi Arabia
[2] Cairo Univ, Egypt Nanotechnol Ctr, Giza, Egypt
[3] Taibah Univ, Dept Chem, Al Madina Al Mounawara 30002, Saudi Arabia
[4] Assiut Univ, Fac Sci, Chem Dept, Assiut 71516, Egypt
关键词
COVALENT ORGANIC FRAMEWORKS; SENSITIVE DETECTION; GAS SENSORS; CARBON; CAPTURE; CRYSTALLINE; CATALYSTS; PROBE;
D O I
10.1039/d4ra07062c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new class of ionic polymers tethering triazine (benzene) core hybrids with three dipyridinium as cationic counterparts combined with bromide and/or chloride anions PPyBz-OBr and PPyTri-OCl were successfully prepared via the alkylation of 4,4 '-dipyridyl derivatives 4,4 '-bp-O with 1,3,5-tris(bromomethyl)benzene BB and/or cyanuric chloride CC. The precursor, 4,4 '-bp-O,was synthesized through the condensation of 4-pyridine carboxaldehyde and 4,4 '-oxydianiline. The resulting ionic polymers, PPyBz-OBr and PPyTri-OCl, underwent metathetical anion exchange, forming new ionic polymers bearing LiTFSI and KPF6 as anions. Characterization of the synthesized hybrid molecules was performed through FTIR, 1H NMR, and 13C NMR analyses. PXRD and SEM showed semi-crystalline structures and a homogenous distribution of micro-/or nanoparticles. TGA and DTA displayed high thermal stability of the synthesized polymer. The sensing activity of the modified ionic polymers was examined using a quartz crystal nanobalance (QCN) for CO2 detection. The resulting sensor demonstrated the ability to provide precise, selective, and reproducible CO2 measurements.
引用
收藏
页码:3317 / 3330
页数:14
相关论文
共 87 条
[1]   Biomedical Applications of Metal-Organic Frameworks for Disease Diagnosis and Drug Delivery: A Review [J].
Al Sharabati, Miral ;
Sabouni, Rana ;
Husseini, Ghaleb A. .
NANOMATERIALS, 2022, 12 (02)
[2]   A review on flexible gas sensors: From materials to devices [J].
Alrammouz, Rouba ;
Podlecki, Jean ;
Abboud, Pascale ;
Sorli, Brice ;
Habchi, Roland .
SENSORS AND ACTUATORS A-PHYSICAL, 2018, 284 :209-231
[3]   A guide to the selection of switchable functional groups for CO2-switchable compounds [J].
Alshamrani, A. K. ;
Vanderveen, J. R. ;
Jessop, P. G. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (28) :19276-19288
[4]   Cellulose Fibers Enable Near-Zero-Cost Electrical Sensing of Water-Soluble Gases [J].
Barandun, Giandrin ;
Soprani, Matteo ;
Naficy, Sina ;
Grell, Max ;
Kasimatis, Michael ;
Chiu, Kwan Lun ;
Ponzoni, Andrea ;
Guder, Firat .
ACS SENSORS, 2019, 4 (06) :1662-1669
[5]  
Berouaken M., 2020, ICREEC 2019, P633, DOI [10.1007/, DOI 10.1007/978-981-15-5444-579]
[6]   From Polymerizable Ionic Liquids to Poly(ionic liquid)s: Structure-Dependent Thermal, Crystalline, Conductivity, and Solution Thermoresponsive Behaviors [J].
Biswas, Yajnaseni ;
Banerjee, Palash ;
Mandal, Tarun K. .
MACROMOLECULES, 2019, 52 (03) :945-958
[7]   A CO2 sensor based on Pt-porphyrin dye and FRET scheme for food packaging applications [J].
Borchert, Nicolas B. ;
Kerry, Joe P. ;
Papkovsky, Dmitri B. .
SENSORS AND ACTUATORS B-CHEMICAL, 2013, 176 :157-165
[8]   A bubble-based microfluidic gas sensor for gas chromatographs [J].
Bulbul, Ashrafuzzaman ;
Kim, Hanseup .
LAB ON A CHIP, 2015, 15 (01) :94-104
[9]   Construction of bifunctional triazine-based imidazolium porous ionomer polymers by a post-crosslinking tactic for efficient CO2 capture and conversion [J].
Cai, Kaixing ;
Liu, Ping ;
Chen, Zheng ;
Chen, Peng ;
Liu, Fei ;
Zhao, Tianxiang ;
Tao, Duan-Jian .
CHEMICAL ENGINEERING JOURNAL, 2023, 451
[10]   Imidazolium- and triazine-based ionic polymers as recyclable catalysts for efficient fixation of CO2 into cyclic carbonates [J].
Cai, Kaixing ;
Liu, Ping ;
Chen, Peng ;
Yang, Chunliang ;
Liu, Fei ;
Xie, Tian ;
Zhao, Tianxiang .
JOURNAL OF CO2 UTILIZATION, 2021, 51