A New Insight into Discharge Ablation Mechanism of Buffer Layer in High Voltage Power Cable

被引:0
|
作者
Xie, Yi [1 ]
Ouyang, Zelun [2 ]
Wang, Jun [1 ]
Cao, Xianhui [1 ]
Zhong, Zhen [2 ]
Wu, Tangqing [2 ]
机构
[1] State Grid Hunan Elect Power Co, Elect Power Res Inst, Changsha 410007, Peoples R China
[2] Xiangtan Univ, Sch Mat Sci & Engn, Xiangtan 411105, Peoples R China
关键词
ablation product; buffer layer; electrochemical decomposition; sodium polyacrylate (PAANa); XLPE cable; POLYACRYLIC-ACID; ADSORPTION;
D O I
10.1007/s11665-024-10350-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, discharge ablation failures of buffer layer in crosslinked polyethylene (XLPE) cable are becoming the main threat for the reliability and the safety of the electrical grid system. However, the discharge ablation process mechanism is controversial. In this paper, the discharge ablation mechanism of buffer layer in high voltage power cable was systematically studied from both the thermal and electrochemical perspectives. The results showed that the discharge ablation product of the buffer layer was mainly made up of NaHCO3, Na2CO3 and trace Al2O3 and Al(OH)3. The main ingredients of the water blocking powder, sodium polyacrylate (PAANa), did not degrade at normal operating temperatures. However, with the help of water, electrochemical decomposition of PAANa molecule occurred under the action of electric field with a relatively low intensity, and some parts of -COONa or -COO- could cleaved from the PAANa backbone, forming CO2 and NaHCO3. The existence of the high-resistance NaHCO3 could bring out the high heat in the local regions of the buffer layer, resulting in the discharge ablation of the buffer layer of XLPE cables. To prevent discharge ablation failures, the buffer layer must be kept as dry as possible.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A new degradation mechanism in high-voltage SiC power MOSFETs
    Agarwal, Anant
    Fatima, Husna
    Haney, Sarah
    Ryu, Sei-Hyung
    IEEE ELECTRON DEVICE LETTERS, 2007, 28 (07) : 587 - 589
  • [32] Comparing tests of partial discharge on XLPE power cable at 0.1 Hz voltage and 50 Hz voltage
    Luo, Jun-Hua
    Fu, Li-Wei
    Tao, Shi-Li
    Li, Wen-Jie
    Gaodianya Jishu/High Voltage Engineering, 2010, 36 (08): : 2000 - 2004
  • [34] Technology for the Detection of Ablation Defects in Buffer Layers of High-Voltage Cables
    Huang, Zeqi
    Lu, Fei
    Tong, Yafang
    Shi, Tianru
    IEEE ACCESS, 2022, 10 : 92843 - 92853
  • [35] Reactive power compensation in high voltage transmission cable lines
    Rakowska, Aleksandra
    Grzybowski, Andrzej
    Stiller, Jerzy
    Siodla, Krzysztof
    PRZEGLAD ELEKTROTECHNICZNY, 2008, 84 (10): : 192 - 194
  • [36] High-Voltage Pulsed-Power Cable Generator
    Lindblom, Adam
    Bernhoff, Hans
    Elfsberg, Mattias
    Hurtig, Tomas
    Larsson, Anders
    Leijon, Mats
    Nyholm, Sten E.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2009, 37 (01) : 236 - 242
  • [37] Electrical engineering - New high voltage cable muffles
    不详
    ZEITSCHRIFT DES VEREINES DEUTSCHER INGENIEURE, 1923, 67 : 243 - 243
  • [38] Management of high voltage cable laying for Jiangya Power Station
    Pan, Xi-rong
    Ou Yang, Xue-feng
    Renmin Changjiang/Yangtze River, 2000, 31 (02):
  • [39] Determination of the inner conductor temperature of high voltage power cable
    Domke, Konrad
    Grzybowski, Andrzej
    Nadolny, Zbigniew
    Rakowska, Aleksandra
    Siodla, Krzysztof
    PRZEGLAD ELEKTROTECHNICZNY, 2010, 86 (11B): : 202 - 204
  • [40] New technology for low-voltage power cable sleeve
    Shtrobl, R.
    Graf, R.
    Rasser, S.
    Markelov, I.A.
    Energetik, 2002, (12): : 44 - 46