Miniaturization and low energy consumption approach to magnetic particle imaging

被引:0
作者
Fan, Lin [1 ,2 ]
Wang, Chengsong [1 ]
Tian, Yushen [3 ]
Lou, Doudou [4 ]
Ma, Qianli [1 ]
Gu, Ning [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, NJUPT NJU Joint Inst Engn Med & Elect Technol, Smart Hlth Big Data Anal & Locat Serv Engn Res Ctr, Sch Integrated Circuit Sci & Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Inst Clin Med, Med Sch, Nanjing Key Lab Cardiovasc Informat & Hlth Engn Me, Nanjing 210093, Peoples R China
[3] Shenyang Univ Technol, Sch Elect Engn, Shenyang 110870, Liaoning, Peoples R China
[4] Nanjing Inst Food & Drug Control, Nanjing 211198, Peoples R China
关键词
Magnetic particle imaging; Superparamagnetic iron-oxide nanoparticles; Gradient magnetic field; Miniaturization; Power consumption; IRON-OXIDE NANOPARTICLES; RED-BLOOD-CELLS; POSITRON-EMISSION; RADIATION-FREE; STEM-CELLS; MRI; OPTIMIZATION; TIME; TRACKING; MPI;
D O I
10.1016/j.nantod.2025.102706
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As an emerging application of superparamagnetic iron oxide nanoparticles, magnetic particle imaging (MPI) is considered a promising and competitive medical imaging technology. However, MPI is still in its infancy and most proposed devices require large amounts of power and occupy a significant physical footprint, hence miniaturization and energy reduction have been one of the research emphases and a crucial driving force for clinical translation. This review focuses on the novel technologies and design philosophies that lead to simplification, integration, reduced costs, and improved energy efficiency in MPI systems, including internal optimization strategies based on advanced electromagnetic modules development, integration optimization strategies orienting multifunctional and multimodal diagnostic and therapeutic equipment, and systematic optimization strategies that incorporate interdisciplinary approaches such as superconductivity and nanotechnology. Among those, internal design is the foundation, for instance, refining magnetic field designs, integrating various functional modules, and introducing advanced electromagnetic materials. From the perspective of reducing the overall size and energy consumption of medical equipment, MPI can be integrated with other diagnostic and therapeutic technologies, which not only fosters advanced methods but also saves on development and operational costs. Furthermore, the interdisciplinary approaches provide more effective solutions, that high-performed magnetic tracers and signal processing algorithms contribute to a lowered dependence on large-scale functional modules and strong-electromagnetic fields. This review offers a systematic and specialized discussion on the miniaturization and low energy consumption approaches, as well as a fresh perspective on the development status of MPI.
引用
收藏
页数:25
相关论文
共 235 条
[11]   Development of high-efficiency superparamagnetic drug delivery system with MPI imaging capability [J].
Bai, Shi ;
Zhang, Xiao-dan ;
Zou, Yu-qi ;
Lin, Yu-xi ;
Liu, Zhi-yao ;
Li, Ke-wen ;
Huang, Ping ;
Yoshida, Takashi ;
Liu, Yi-li ;
Li, Ming-shan ;
Zhang, Wei ;
Wang, Xiao-ju ;
Zhang, Min ;
Du, Cheng .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
[12]   Development of a human-size magnetic particle imaging device for sentinel lymph node biopsy of breast cancer [J].
Bai, Shi ;
Gai, Lingke ;
Zhang, Qinyang ;
Kang, Yue ;
Liu, Zhiyao ;
He, Yuan ;
Liu, Wenzhong ;
Jiang, Tao ;
Du, Zhongzhou ;
Du, Siyao ;
Gao, Si ;
Zhang, Min ;
Li, Tianshu .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
[13]  
Bai Z., 2018, Adv. Funct. Mater., V28, DOI [10.1002/adfm.201802281, DOI 10.1002/ADFM.201802281]
[14]   Albumin-Coated Single-Core Iron Oxide Nanoparticles for Enhanced Molecular Magnetic Imaging (MRI/MPI) [J].
Baki, Abdulkader ;
Remmo, Amani ;
Loewa, Norbert ;
Wiekhorst, Frank ;
Bleul, Regina .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (12)
[15]   Magnetic particle imaging for aerosol-based magnetic targeting [J].
Banura, Natsuo ;
Murase, Kenya .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (08)
[16]   High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI) [J].
Bauer, Lisa M. ;
Situ, Shu F. ;
Griswold, Mark A. ;
Samia, Anna Cristina S. .
NANOSCALE, 2016, 8 (24) :12162-12169
[17]   QUENCH PROPAGATION IN HIGH T-C SUPERCONDUCTORS [J].
BELLIS, RH ;
IWASA, Y .
CRYOGENICS, 1994, 34 (02) :129-144
[18]   Magnetic Particle Imaging: Current and Future Applications, Magnetic Nanoparticle Synthesis Methods and Safety Measures [J].
Billings, Caroline ;
Langley, Mitchell ;
Warrington, Gavin ;
Mashali, Farzin ;
Johnson, Jacqueline Anne .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (14)
[19]  
Blanke S, 2023, Arxiv, DOI [arXiv:2306.10722, DOI 10.48550/ARXIV.2306.10722]
[20]   The 2021 room-temperature superconductivity roadmap [J].
Boeri, Lilia ;
Hennig, Richard ;
Hirschfeld, Peter ;
Profeta, Gianni ;
Sanna, Antonio ;
Zurek, Eva ;
Pickett, Warren E. ;
Amsler, Maximilian ;
Dias, Ranga ;
Eremets, Mikhail, I ;
Heil, Christoph ;
Hemley, Russell J. ;
Liu, Hanyu ;
Ma, Yanming ;
Pierleoni, Carlo ;
Kolmogorov, Aleksey N. ;
Rybin, Nikita ;
Novoselov, Dmitry ;
Anisimov, Vladimir ;
Oganov, Artem R. ;
Pickard, Chris J. ;
Bi, Tiange ;
Arita, Ryotaro ;
Errea, Ion ;
Pellegrini, Camilla ;
Requist, Ryan ;
Gross, E. K. U. ;
Margine, Elena Roxana ;
Xie, Stephen R. ;
Quan, Yundi ;
Hire, Ajinkya ;
Fanfarillo, Laura ;
Stewart, G. R. ;
Hamlin, J. J. ;
Stanev, Valentin ;
Gonnelli, Renato S. ;
Piatti, Erik ;
Romanin, Davide ;
Daghero, Dario ;
Valenti, Roser .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (18)