Miniaturization and low energy consumption approach to magnetic particle imaging

被引:0
作者
Fan, Lin [1 ,2 ]
Wang, Chengsong [1 ]
Tian, Yushen [3 ]
Lou, Doudou [4 ]
Ma, Qianli [1 ]
Gu, Ning [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, NJUPT NJU Joint Inst Engn Med & Elect Technol, Smart Hlth Big Data Anal & Locat Serv Engn Res Ctr, Sch Integrated Circuit Sci & Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Inst Clin Med, Med Sch, Nanjing Key Lab Cardiovasc Informat & Hlth Engn Me, Nanjing 210093, Peoples R China
[3] Shenyang Univ Technol, Sch Elect Engn, Shenyang 110870, Liaoning, Peoples R China
[4] Nanjing Inst Food & Drug Control, Nanjing 211198, Peoples R China
关键词
Magnetic particle imaging; Superparamagnetic iron-oxide nanoparticles; Gradient magnetic field; Miniaturization; Power consumption; IRON-OXIDE NANOPARTICLES; RED-BLOOD-CELLS; POSITRON-EMISSION; RADIATION-FREE; STEM-CELLS; MRI; OPTIMIZATION; TIME; TRACKING; MPI;
D O I
10.1016/j.nantod.2025.102706
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As an emerging application of superparamagnetic iron oxide nanoparticles, magnetic particle imaging (MPI) is considered a promising and competitive medical imaging technology. However, MPI is still in its infancy and most proposed devices require large amounts of power and occupy a significant physical footprint, hence miniaturization and energy reduction have been one of the research emphases and a crucial driving force for clinical translation. This review focuses on the novel technologies and design philosophies that lead to simplification, integration, reduced costs, and improved energy efficiency in MPI systems, including internal optimization strategies based on advanced electromagnetic modules development, integration optimization strategies orienting multifunctional and multimodal diagnostic and therapeutic equipment, and systematic optimization strategies that incorporate interdisciplinary approaches such as superconductivity and nanotechnology. Among those, internal design is the foundation, for instance, refining magnetic field designs, integrating various functional modules, and introducing advanced electromagnetic materials. From the perspective of reducing the overall size and energy consumption of medical equipment, MPI can be integrated with other diagnostic and therapeutic technologies, which not only fosters advanced methods but also saves on development and operational costs. Furthermore, the interdisciplinary approaches provide more effective solutions, that high-performed magnetic tracers and signal processing algorithms contribute to a lowered dependence on large-scale functional modules and strong-electromagnetic fields. This review offers a systematic and specialized discussion on the miniaturization and low energy consumption approaches, as well as a fresh perspective on the development status of MPI.
引用
收藏
页数:25
相关论文
共 235 条
[1]   Fucoidan Prolongs the Circulation Time of Dextran-Coated Iron Oxide Nanoparticles [J].
Abdollah, Maha R. A. ;
Carter, Thomas J. ;
Jones, Clare ;
Kalber, Tammy L. ;
Rajkumar, Vineeth ;
Tolner, Berend ;
Gruettner, Cordula ;
Zaw-Thin, May ;
Torres, Julia Baguna ;
Ellis, Matthew ;
Robson, Mathew ;
Pedley, R. Barbara ;
Mulholland, Paul ;
de Rosales, Rafael T. M. ;
Chester, Kerry Ann .
ACS NANO, 2018, 12 (02) :1156-1169
[2]  
Antonelli A., 2022, Int. J. Mag. Part. Imag., V8, DOI [10.18416/IJMPI.2022.2209001, DOI 10.18416/IJMPI.2022.2209001]
[3]   Development of long circulating magnetic particle imaging tracers: use of novel magnetic nanoparticles and entrapment into human erythrocytes [J].
Antonelli, Antonella ;
Szwargulski, Patryk ;
Scarpa, Emanuele-Salvatore ;
Thieben, Florian ;
Cordula, Gruettner ;
Ambrosi, Gianluca ;
Guidi, Loretta ;
Ludewig, Peter ;
Knopp, Tobias ;
Magnani, Mauro .
NANOMEDICINE, 2020, 15 (08) :739-753
[4]   Red blood cells as carriers in magnetic particle imaging [J].
Antonelli, Antonella ;
Sfara, Carla ;
Rahmer, Juergen ;
Gleich, Bernhard ;
Borgert, Joern ;
Magnani, Mauro .
BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2013, 58 (06) :517-525
[5]   Tomographic magnetic particle imaging of cancer targeted nanoparticles [J].
Arami, Hamed ;
Teeman, Eric ;
Troksa, Alyssa ;
Bradshaw, Haydin ;
Saatchi, Katayoun ;
Tomitaka, Asahi ;
Gambhir, Sanjiv Sam ;
Hafeli, Urs O. ;
Liggitt, Denny ;
Krishnan, Kannan M. .
NANOSCALE, 2017, 9 (47) :18723-18730
[6]   Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments [J].
Arami, Hamed ;
Ferguson, R. M. ;
Khandhar, Amit P. ;
Krishnan, Kannan M. .
MEDICAL PHYSICS, 2013, 40 (07)
[7]   Rapid TAURUS for Relaxation-Based Color Magnetic Particle Imaging [J].
Arslan, M. Tunc ;
Ozaslan, A. Alper ;
Kurt, Semih ;
Muslu, Yavuz ;
Saritas, Emine Ulku .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (12) :3774-3786
[8]  
Ayachit A., 2016, Devices Syst., V10, P337, DOI [10.1049/iet-cds.2015.0147, DOI 10.1049/IET-CDS.2015.0147]
[9]   Advancing intraoperative magnetic tracing using 3D freehand magnetic particle imaging [J].
Azargoshasb, Samaneh ;
Molenaar, Lennert ;
Rosiello, Giuseppe ;
Buckle, Tessa ;
van Willigen, Danny M. ;
van de Loosdrecht, Melissa M. ;
Welling, Mick M. ;
Alic, Lejla ;
van Leeuwen, Fijs W. B. ;
Winter, Alexander ;
van Oosterom, Matthias N. .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2022, 17 (01) :211-218
[10]  
Bai S., 2023, https, IEEE Trans. Magn., V59, P15, DOI [10.1109/TMAG.2023.3285847, DOI 10.1109/TMAG.2023.3285847]